O valor cultural e a fofice do solo

O valor cultural de um solo diminui com a densidade de sua estrutura (PERIGAUD). Quanto mais duro um solo, tanto mais ácido (SEKERA) e quanto mais baixo o pH, tanto menos bactérias e actinomicetos, e tanto mais fungos ali habitam (RUSSELL). A planta, cujas raízes encontram considerável resistência nas camadas duras, desenvolve-se mal. A absorção dos nutrientes é seriamente comprometida. ROUTSCHENKO encontrou batatinhas com coração preto e õcuds, sômente em solos duros (baixo o pH) e muito ácidos, sendo os tubérculos pebres em Ca, K, Mg, NO₃, mas ricos em NH₄ e Cl.

Consequentemente, a planta desenvolve-se mal e produz colheitas ruins.

Há culturas, como a da batata-doce, que se dão bem em solos duros, porém a maioria prefere solos floculados e fôsos. Os grumos do solo se formam tanto pela floculação mineral, como pela micorgânica, sendo os flocos depois reunidos em grumos maiores, pela raiz do vegetal, especialmente pela do capim (RUSSELL, COHEN). Assim, explica-se porque uma terra ácida, com pouco poder floculativo, pode ser fôsa (gracias a micorgânica). Por vias químicas, tal solo nunca é floculado e fôso. Mas por métodos de cultivo adequados, como calagem e adubação orgânica, podemos alcançar a revitalização e floculação de tais solos. Precisa ser ressaltado que bactérias anacórbias e autótrofas não contribuem para a fofice do solo, mas sômente as acróbias tanto autóctones como simógenicas (o termo «simógenicas» é usado por WINOGRADSKY para denotar a microflora «domésticas», que depende dos tratos humanos).

Sabemos que esta flora simógenica se desenvolve com a aração e adubação orgânica e desaparece com a falta de aração e de matéria orgânica, como já constatou WINOGRADSKY e, novamente, mais tarde, os cientistas da fertilidade do solo RUSSELL, DOEKSEN, PRIMAVESI, e outros. Isso significa que:

1. A microflora autóctone não é responsável pela estrutura fôsa: das nossas terras de cultura, como SEKERA havia pensado.

2. A fofice dos nossos solos agrícolas é absolutamente artificial e depende, pois, inteiramente, do trato dado pelo homem.

Como PRIMAVESI (1964) havia provado, a microflora autóctone de pastos desaparece, quase totalmente, em solos agrícolas, cedendo lugar a uma microflora própria à terra de cultura. A fofice dos solos agrícolas e hortícolas não é muito estável e necessita de cuidados permanentes para não degenerar.

Fig. 47 — Raiz de trigo em solo fôso — a nutrição contínua e normal é garantida.

Fig. 45 — Raízes de guanxuma (Sida rhombifolia). As setas indicam os lugares onde a raiz encontrou forte resistência no solo, podendo superá-la sômente após grandes dificuldades. Daí as terceiradas e forquilhamento.

Fig. 49 — Solo natural, flora política (125:1).

Fig. 50 — Terra de cultura fôsa (125:1).

Fig. 51 — Terra de cultura dedicada e dura (125:1).
AGROUPEMENTO DE BACTÉRIAS NO SOLO

Fig. 52 — Solo infértil, abandonado; a formação de muco é forte. (125:1).
Fig. 53 — Pasto ácido e muito pisado, predominando as lactobactérias. (125:1).
Fig. 54 — Uma bactéria que produz antibióticos no meio. Em vias, decompositores de antibiótico, seguido de um espaço vago. (125:1).
Fig. 55 — Fungos e bactérias na ligações dos grânulos do solo (408:1).

A decadência do solo agrícola é causada pela decadência da microflora zimogênica e não pode ser recuperada por simples correção do pH ou por métodos mecânicos, mas sómente pela recuperação e equilíbrio da microvida zimogênica. (BROMFIELD, WAKSMAN, RUSSELL, PRIMAVESI, (1952), DOEKSEN, e outros).

ATIVIDADES AGRÍCOLAS

É essa a razão porque BROMFIELD chama a microvida de solos agrícolas de «animaizinhos domésticos»: ela depende intimamente do homem. A estrutura lôsia de pastos bons pode, se arados, dar uma boa partida à estrutura lôsia do solo de cultura, mas nunca se conserva ali e, portanto, a folha desaparece em pouco tempo.

Se o PO₄ < 7, as plantas são sempre pequenas, murchando facilmente com um pouco de sol, são pobres em lignina, mas ricas em glicose e sacarose. Sómente durante a germinação as plantas apreciam um PO₄ < 6,0 (SIEGEL), isto é, um solo pouco agridoce. Por isso usa-se a prática de apertar o chão após a semeadura, o que porém torna necessário o seu posterior arejamento, logo depois do nascimento das plantinhas.

Segundo SEKERA, a construção viva dos flocos de terra por micélio de actinomicetos é a base da fertilidade de cada solo, que aumenta pela segregação de muco pelas bactérias, diminuindo assim, consideravelmente a evaporação.
Podemos concluir que uma terra «viva» é incomparavelmente mais estável contra a seca porque:
1 — A sua retenção de água é muito maior que a da terra compacta.
2 — Os micróbios evitam a evaporação mediante segregação de muco.
3 — Os micróbios formam água nos diversos processos bioquímicos.
4 — Os grânulos de terra evitam a formação de capilares de ascensão da água.
A terra viva permanece ainda úmida, enquanto a terra morta encontra-se já ressequida e rachada.

Segundo nossas experiências, as culturas agrícolas, em terras vivas, suportam 10 a 12 semanas de seca total, sem sofrer consideráveis prejuízos. Além disso, o crescimento vegetal não depende sómente da umidade do solo, mas do balanço entre água absorbida e água transpirada. Falamos pois, não de teor em umidade, mas do potencial em umidade, que exprime muito melhor a situação real.

ATIVIDADES QUE INFLUENCIAM A VIDA MICROBIANA NA TERRA INFLUÊNCIAS INDIRECTAS:
1 — areiação, gradeação e cultivação,
2 — adubação orgânica,
3 — adubação química e colaagem,
4 — uso da terra.

1 — A AREIA provoca tanto um solteamento do solo, como uma modificação da posição das camadas da terra. A terra está melhor arejada, a sua capacidade de infiltração aumenta, enquanto a da evaporação diminui. Ao mesmo tempo, ocorre uma elevação da temperatura, porque a água possui um alto grau de calor específico. Pelo arejamento do solo incentivam-se os processos de oxidação, quer dizer, aumenta a formação de CO₂ e NO₃.

Por outro lado, dificultam-se os processos anaeróbios no solo, que, via de regra, têm influência danosa. Assim, impede-se a formação de turfa e a desmitrificação e redução dos nitratos.
A aração, graduação e todos os outros trabalhos no campo nunca devem ser feitos para alcançar efeito momentâneo, que é a pulverização do solo. Eles devem visar a formação de uma estrutura fofa e estável (SCHAFFER).

Um enxugamento temporário do solo é benéfico, porque sob condições úmidas, os bacteriófagos aumentam desproporcionalmente. Estes são muito susceptíveis à seca, morrendo logo, se faltar a umidade. As toxinas são destruídas pela seca. Os protozoários não têm mais garantida a sua multiplicação ilimitada (RUSSELL).

Entendemos pois, que terras permanentemente inundadas, como acontece com muitos dos nossos arrozais, desenvolvem uma micorrízica danosa à agricultura, reduzindo assim, ligeiramente as colheitas. Para mantença de boas colheitas é, portanto, essencial drenar radicalmente os campos de arroz depois da colheita, e plantar, de vez em quando, uma cultura escolhida seja ela de milho, leguminosas ou batatas.

Segundo HIRTE, desenvolve-se em solos irrigados uma microriza intensa, porém unilateral. Predominam bactérias fluorescentes e gram-negativas, bem como as de forte coloração, que são tóxas conhecidas como produtoras de antibióticos, criando, finalmente, uma micorrizia e uma flora e fauna próprias, danosas às culturas. MITCHELL constatou um forte desenvolvimento de fungos, somente em lugares onde a terra fler pobre em matéria orgânica.

Reunindo, todos os trabalhos no campo, inclusive a irrigação, têm uma pronunciada ação sobre a micorriza.

Trabalhos executados, ignorando esse fato, podem acarretar sérios distúrbios na micorriza, provocando a decadência da estrutura fofa e, com isso, a da fertilidade do solo (SEKERA, RUSSELL, PRIMAVERI (1952), GÖRING). Tanto SEKERA como LÉSSARD e CHERATZKI declararam que o volume poroso do solo diminui proporcionalmente ao aumento da profundidade de aração, porque vira as camadas emortuadas à superfície, e a estrutura não resistir a ação da chuva. A manutenção desta estrutura, porém, é vital às nossas lavouras, porque garante:

1 - a normal absorção de nutrientes suficientes para o bom desenvolvimento da cultura. As plantas serão, assim, sempre bem nutridas;
2 - ao solo um maior poder de retenção de água;
3 - a micorriza, que é forçosamente polifórmica; a partir do momento que se torna unilateral, decai a estrutura porosa.

Os trabalhos no campo, especialmente as arações e graduações, devem ser feitos em estádio acérdico com a evolução do solo, visando, especialmente, a manutenção de uma rica e polifórmica micorriza. Esta provoca a estrutura desejada, que beneficia ao máximo as culturas agrícolas e possibilita uma adubação comercial em bases econômicas (PRIMAVERI).

É absolutamente errado executar os trabalhos no campo, como é usual na agricultura extensiva, unicamente pelo ponto de vista da cultura que se pretende plantar. Arações profundas, adubações maciças, em-

prégo de máquinas de destornamento, etc., são métodos que trabalham em completa ignorância aos factores que promovem a fertilidade. Deve-se lembrar que cada método, agindo em desconsideração ao equilíbrio biológico do solo, destrói a fertilidade. Mesmo se o método parecer acertado no momento, como, por exemplo, uma aração profunda, este está errado, e causa, como provam nossos solos de cultura, a destruição da fertilidade.

Também o cultivo do limpo abandona-se sempre mais, porque a intensiva isolação do solo prejudica muito a micorriza, e com isso, a estrutura do mesmo; em muitos países é substituída por culturas intercaladas, já que as culturas agrícolas, em nossos solos decaídos, quase nunca chegam a sombream o chão.

2 - A ADUBAÇÃO ORGÂNICA:

Como já frisamos, é o estresse de curral bem curtido o adubo mais valioso da agricultura, porque:

a) fornece matéria orgânica;

b) enriquece a terra em potássio, fósforo e nitrogênio;

c) enriquece a terra em microorganismos tanto pelo número de novos microrganismos que se produz, como pela atividade dos mesmos; a cultura microbiana da terra;

d) melhora a fertilidade da terra, modificando favoravelmente as condições físicas e químicas do solo (VERHELIN).

SALTER e HAWORTH provam que a capacidade do solo para produzir a adubação vegeativa (em reter água útil, sem encharcar) aumenta pela aplicação de estresse de curral, mas sômente se este for virado superficialmente, porque só assim provoca-se a formação de uma camada fofa.

A adubação verda é, essencialmente, um alimento para os microrganismos, fornecendo oxigênio e carbonatado, isto é, energia para a microvida. (RUSSELL).

GUILLEMET e MONTEGUT constataram o benefício de certos fungos pela adubação; especialmente esta de estresse de curral, como do Aspergillus nidulans, A, restrictum, Penicillium verruculosum, Melanospora, mas antes de tudo do Trichoderma, assim como também dos fungos imperfeitos.

Com a adubação mineral (NPK) são especialmente beneficiados os Penicillium. Segundo estes autores, a camada superficial do solo, até 20 a 25 cm, possui uma flora zimogênica, enquanto as camadas subjacentes não sofrem alteração microbiana pelo cultivo.

Houve um tempo em que se considerava sômente a adubação de estresse curtido ou de compostos, que é matéria orgânica fermentada e decomposta. Porém, desde os sucessos de Sr. ALBERT HOWARD, com a adubação verda, esta foi sempre mais usada, em detrimento daquela. A grande vantagem da adubação verda é trágica:

1 - sombrega o chão, por toda a época, em que está crescendo,

2 - abre, com suas raízes poderosas, as camadas duras, abrindo o solo à micorriza.
3 — anima altamente a micróbica, quando aplicada superficialmente ao solo.

Muitos fracassos, porém, diminuíram o uso da adubação verde. Estes fracassos devem-se ao fato da matéria orgânica ser considerada alimento vegetal e, por isso, profundamente virada no solo, sofrendo ali uma decomposição anaeróbica, produzindo metano, um tóxico aos vegetais.

Se a adubação verde é aplicada superficialmente, com o único objetivo de servir de alimento microbiano, o efeito beneficente nunca falhará. Ela promoverá a fofice e constituirá uma adubação nitrogenada, mas nunca enriquecerá o solo com humus, porque a sua relação N : C é, ainda, muito estreita (ALLISON).

Segundo TURELLE, a cobertura morta, com palha de cereal colhido, aumenta muito a fofice, porém impede o desenvolvimento de bactérias de fixação de N e de nitrificação (SCHÖNECKE), que aparecem, porém, quando o mulech for virado no solo.

3 — A ADUBAÇÃO QUÍMICA E A CALAGEM modificam:

a) a concentração da solução aquosa do solo e com isto,

b) o pH do solo,

c) a nutrição vegetal e micróbiana.

É conhecido que uma elevação do pH tem influência decisiva sobre a micróliva. Sabemos que alguns anions e cations que se acumulam no solo como restos de adubos, por exemplo, Cl− (de KCl), Na+ de (NaNO3) e SO4 (de MgSO4), exercem influência prejudicial aos micróbios, às micro- e mesofauna.

<table>
<thead>
<tr>
<th>Adubo</th>
<th>pH no início</th>
<th>pH depois 2 dias</th>
<th>pH depois 70 dias</th>
</tr>
</thead>
<tbody>
<tr>
<td>uréia</td>
<td>6,45</td>
<td>7,6</td>
<td>5,35</td>
</tr>
<tr>
<td>(NH4)2SO4</td>
<td>6,45</td>
<td>6,9</td>
<td>5,20</td>
</tr>
<tr>
<td>sulfato de amônio</td>
<td>6,45</td>
<td>6,65</td>
<td>6,40</td>
</tr>
<tr>
<td>NaNO3 (salitre)</td>
<td>6,45</td>
<td>6,65</td>
<td>6,40</td>
</tr>
</tbody>
</table>

Mas, a falta de nutrientes tem efeito prejudicial à vida micróbiana, porque esta utiliza da mesma maneira sais minerais, como as plantas de cultura.

Sobre os efeitos da adubação química vide Capítulo V.

Devemos resumir: O mais importante de uma adubação química é a manutenção do equilíbrio nutricional. Cada adubação unilateral, mesmo se promove um melhor desenvolvimento da cultura, deve ser considerada um método predatório, que contribui para o esgotamento e decadência total do solo. (BAULE).
ROTAÇÃO DE CULTURAS

3 — Os rostios de culturas ou rotações são um método mais avançado de garantir a multiplicidade dos microorganismos e a fertilidade do solo. No entanto, rotação não é somente a simples troca de duas culturas, mas sim a mudança organizada entre culturas que:

a — beneficiam a microvida, tais como colza, cebola, gramíneas forrageiras, leguminosas, batatinhas estercadas, batata-doce, etc.

b — prejudicam a microvida, tais como tóidas as culturas existentes, por exemplo: trigo, arroz, algodão, linha, etc.

c — culturas neutras e modestas que aproveitam, ainda, a fertilidade existente, tais como: milho, aveia, centeio, mandioca, etc.

Rotações vantajosas são, por exemplo:

Sorgo — tomate — trevo — algodão
Azevém — batatinha com ervilha — linha — milho — amendoin
Alfafa — trigo — mourisco — aveia — batata-doce.

4 — Rotações mistas são aquelas que hoje mais se propagam, porque se reconheceu a vantagem de recuperar, de vez em quando, a microvida autóctone, a fim de «descansar» o solo antes de submetê-lo a novo regime rigoroso da microvida zimogênica e de elevada produção.

Esta rotação consiste em 3 anos de culturas agrícolas e 3 anos de invermadas ou pastos artificiais, por exemplo:

Batatinha com estércio — trigo — milho — invermada de 3 anos.

Deve-se ter o cuidado de não plantar uma forrageira somente, mas, pelo menos, 4 ou 5 forrageiras, gramíneas e leguminosas, ascendendo a 8 ou mais variedades as misturas oficiais em muitos países (KLAPP). Para permitir uma boa recuperação, deve-se, mesmo em pastos artificiais, evitar o pastoreio permanente e ceifar uma vez por ano.

A ceifa permanente é mal suportada pela vegetação forrageira, porque é bem conhecida a regra que: «O pastoreio elimina as ervas de alto porte e ceifa as de baixo porte», ou que, segundo KLAPP, provoca, com o pastoreio, a eliminação das plantas com raízes abundantes, limitando o enraizamento a 4 ou 5 cms da superfície. Permanente uso de invermada céfada, ao contrário, beneficia as plantas de porte alto e raízes profundas, porém deixa o solo práticasmente desprotegido e sem sombreamento, prejudicando gravemente a sua fertilidade.

OS PASTOS E SUA MANUTENÇÃO

O pastoreio permanente, com o socamento da superfície do solo, provoca um empobrecimento do mesmo em micro- e mesocarona. A resultante gleização prejudica tanto a microfauna, como o faz a «cultura a limpo», sendo o dano maior em culturas perenes, como pomares e cafés. (WILCKE).

O pastoreio permanente provoca, segundo KLAPP:

1 — o endurecimento da superfície do solo,
2 — a eliminação de tódas as plantas que se multiplicam por zomentas,
3 — o beneficiamento de tódas plantas que se multiplicam por rizomas, sendo de porte baixo,
4 — em pastos «sobrearrastados» multiplicam-se, especialmente, as ervas despresadas pelo gado, como : barba-de-bode (Aristida palma), erva de rato, (Asclepias curassavica L.), juncas (Cyperaceae), etc.

Em pastos parcialmente encharcados, como em grande parte do Rio Grande do Sul, desenvolvem-se parasitas, que se alojam no figado e pulmões do gado, como tambem na bexiga, prejudicando gravemente a saúde animal.

Segundo BATES, aumenta o humo em pastos pobres a 102% em 11 anos e em pastos bons, segundo RUSSELL, de 500 a 530%. LEHMANN encontrou em pastos permanentes 12,4% de humo; em pastos ácidos e úmidos, pobres em microfauna, o humo acumula-se na superfície por não ser mais misturado com o solo, e em lugar de melhorá-lo, forma uma camada absorvente que finalmente provoca a gleização e paludização do terreno (WILJAMS). Não há, portanto, recuperação de um pasto, sem recuperação da microfauna (FRANZ, EVANS, GISIN).

Recuperar-se a microflora pela adubação com estreme (FRECHMANN, TIEMANN), calagem e adubos comerciais, — especialmente os de elementos menores como Mo, Cu, B. (KLAPP, BRENCHLEY, e WEBER) — e quebra-ventos (AICHINGER), possibilitando, assim, o restabelecimento da microfauna.

De maior importância é, no entanto, o uso, que influí decisivamente sobre as sociedades vegetais e microgênicas.

Enquanto na Inglaterra exige-se, ainda, o «ley - farming», a rotação entre agricultura e pastos artificiais, na maioria dos países reconhece-se que o melhoramento dos pastos pode ser feito sem lavração, pela simples influenciação da micro e macroflora. (VOISIN, DAVIES, KLAPP, EVANS, GARNDER, MILTON e outros).

Serve, aqui, a regra de que a microfauna necessita de solos arejados (não muito pisados), frescos (mas não úmidos), tendendo para o neutro, com bons enraizamentos. A pastagem dirigida, — com épocas de descanso para o solo, — permite outros trabalhos, como adubação orgânica, adubação química, calagem, etc., possibilitando a recuperação do pasto, quando não é, ainda, gleizado. Também, aqui, vê-se claramente, que o desequilíbrio de um fator do ciclo vital planta — solo — microvida acarreta a decadência dos demais e o melhoramento de um fator, que é aqui a vegetação, provoca o de todos. Isto ressalta a necessidade da consideração do conjunto de fatores e nunca de um só, isoladamente.
Fig. 56 — Vegetação predominante em campos abandonados da Depressão Central, Rio Grande do Sul. B — Barba-de-bode (Aristida pallens), C — Carqueja (Baccharis sp.), E — Erva lanceta (Solidago microglossa), G — Guaxuma (Sida sp.), P — Penachinho (Bothriochloa lagurioides), R — Cola-de-burro (é chamado também «Rabo-de-burro» (Andropogon condensatus), A — Alecrim do campo (Vernonia sp.).

Um dos maiores problemas é o aparecimento de ervas daninhas nos pastos, como, por exemplo, caragüatá (Eryngium sp.), Maria mole (Senecio sp.), carqueja (Baccharis sp.), junças e outras ciperáceas, barba-de-bode (Aristida pallens), samambaias, etc.

Todas estas pragas dos pastos são, como foi explicado em capítulos anteriores, produtos do seu ambiente e a sua erradicação não se dá pelo simples combate com ervicidas, herbicidas ou roça, mas somente pela modificação do próprio ambiente. As causas da decadência do pasto provêm unicamente do seu uso descontrolado e explorativo. Pastoreio muito intenso, com o pisoteio do gado de um lado e a seletividade dos animais por outro, provoca a proliferação de ervas, cuja multiplicação se dá por rizomas e que, graças a sua modéstia (junças) ou a simbiose com fungos (caragüatás), vingam em solos duros.

Com o tempo, a associação vegetal destes pastos é, de preferência, formada de plantas que o gado renega (KLAPP). O encarncamento temporário destes solos, pisoteados e endurecidos na superfície, é a lógica consequência, da qual, por sua vez, resulta o mais rápido empobrecimento do solo pastoril, especialmente em potássio, magnésio e cobre (VOISIN). Este empobrecimento tem, por consequência, um gado mal nutrido, sujeito a uma série de doenças diretamente, como tetania dos pastos, infertilidade, paralisias parciais, etc. (FREDER); ou indiretamente, como febre aftosa, etc. (BROMFIELD), causadas pelas deficiências minerais da forragem.

Devem ser lembradas aqui, somente algumas causas específicas do aparecimento de alguns inços pastoris. — Todos os caragüatás (Eryngium) e as junças (Cyperaceae) vegetam tanto em solos úmidos ou secos, ácidos, como em alcalinos e não podem ser considerados, assim, como plantas indicadoras de terrenos ácidos ou úmidos, como é muito comum. O que todos têm em comum, porém, é:

1 — Solos com uma camada sobre maneira endurecida na superfície ou logo abaixo dela.
2 — Solos isentos de microflora e pobres em microflora.
3 — Acumulação de humo ácido e pobre na superfície.

O melhoramento de pastos infestados por estas plantas requer:

a — drenar o terreno, se este fôr úmido,
b — freqüentes calagens moderadas (2 vezes por ano, 500 a 600 kg/ha),
c — uma adubação com estrume ou composto, para reativar a microvida,
d — evitar um pastoreio intenso,
e — ceifar, ao menos duas vezes por ano, comsegadeira,
f — evitar a aração, gradeação ou qualquer outra medida que possa ferir a superfície, (KLAPP),
g — adubação moderada com fosfatos (300 kg/ha de superfosfato), potássio (90 kg/ha de KCI), cobre (5 kg/ha de CuSO4), e molióbdenio (0,8 a 1,2 kg/ha de molióbdeno de amônia).

Todas as Compositaeas, como Maria mole (Senecio), alecrim do campo (Vernonia), carqueja (Baccharis) são próprias de solos não muito duros, temporariamente úmidos, e muito pobres, especialmente em potássio.

Os métodos mais adequados para a sua eliminação são:

1 — drenagem do terreno,
2 — uma ceifa no estado juvenil; isto é, no início da florecência,
3 — uma adubação potásica.

A barba-de-bode (Aristida pallens), é o representante típico de pastos muito judiados, indicando sempre um uso predatório. Cresce em solos frequentemente queimados, muito duros e secos. Sem adubação orgânica não há re-
cuperação destes solos. Eles respondem tanto a uma adubação de estrume de cítral como a uma adubação verde.

Em nosso meio, a última deve ser a única viável, porque não há estrume em tais quantidades. A aeração do campo com, ao menos, uma adubação verde e duas calagens moderadas (600 kg/ha), seguidas pelo plantio de milho junto com capim forrageiras\ne o meio indicado de recuperar esses pastos. Em sítios com produção grande de estrume de curral, uma adubação com 25 to/ha de esterco, uma calagem (800 kg/ha) e o descanso completo do campo por um ano, podem, também, eliminar a barba-de-bode. (AICHINGER).

Deve-se ter o cuidado de não sobrepastar o campo, de novo, e, especialmente, de evitar rigorosamente as queimadas.

INFLUÊNCIAS DIRETAS SÓBRE OS MICRORGANISMOS

1. fisicamente,
2. quimicamente,
3. biologicamente.

MÉTODOS FÍSICOS

A queimada e seus efeitos sobre o solo:

Esta prática, já encontrava referência na época dos Vedas, 2000 anos antes de Cristo. Denominava-se brasa. Já VERGILIO, no Império Romano, advertiu que os benefícios de tal prática são poucos, quando se queimam sómente os restolhos. Quando se faz uma roça com esta prática, não há mais benefícios, mas sómente danos consideráveis à estrutura da terra.

A ação benéfica não é tanto pela aniquilação de protozoários e outras células animais e vegetais, que se encontram nas camadas superiores da terra, mas, pela ascensão de umidade que possibilita o plantio, ainda antes de começar as chuvas. No Egito, esta prática de queimar os restolhos é tão antiga como a história do país, e chama-se "beraquus". Provocaram com a mesma o deserto do Saara.

Na agricultura subtropical, a prática da queimada tem elevada importância. Secando uma terra, seja pelo sol ou pelo fogo, e, em seguida, provocando-a, provoca-se uma ativação altamente benéfica da decomposição de humo, o que resulta em maior produção de amôniaco e, consequentemente, em maior produção de nitritos caso o solo fós inoculado depois com um pouco de terra viva (BIRCH).

Quanto mais o solo for seco, antes de ser reumecido, tanto maior será depois a decomposição de humo — caso existir humo e caso forem acrescentados microrganismos. Na prática, para nós, temos o seguinte quadro:

Na agricultura tropical não há humo de reserva em terras de cultura e pastos. Existe, pois, sómente uma reserva de humo nas camadas mais superficiais dos pastos. A queima permanente dos pastos provoca, porém, a forçada ascensão da umidade de camadas mais profundas. A superfície encostada

ou pisada não permite a fácil penetração da água pluvial. Provocamos pois, com a queimada, o gradativo secamento da terra, que, depois de dezenas de anos de uso desta prática, não produz mais nada senão barba-de-bode (Aristida pallens) numa terra completamente estéril, endurecida. Notamos, então, que o efeito benéfico não ocorre, caso faltar a posterior "inoculação" na terra de microrganismos, se esta não fós arada e se não existir matéria orgânica (RUSSELL).

Esta posterior inoculação, existe na Índia e China, países clássicos desta prática, onde os lavradores, depois de queimar os restolhos, adubam a terra com estrume de curral, cuidadosamente preparado. Onde faltar esta adubação com estrume, assistimos à mais pavorosa devastação das terras pelo fogo. Assim, por exemplo, nos nossos Índios, na América Central, devastaram por completo, os seus milhares, pela prática de colhêr-queimar-plantar, (fazendo somente um furo na terra mediante uma vara para poder colocar as sementes). Bastaram sete conquistadores para destruir o seu império debilitado (ZISCHKA). O nosso nordestino brasileiro foi também arruinado pela mesma prática.

Reconhecemos duas verdades:

1. — Nem tudo que é costume é bom.
2. — Não se pode introduzir uma prática esquecendo-se a parte mais importante dela.

E esta parte mais importante na queima é, sem dúvida alguma, a posterior adubação com estrume de curral.

No Rio Grande do Sul, a queima dos arrozais é absolutamente benéfica, caso se continue com uma cultura a séco, bem estrumada, como, por exemplo, de batatinhas, etc. Torna-se, porém, absolutamente maléfica, caso seja feita sem este posterior cuidado.

Esterilização por vapor:

Nos EUA e Inglaterra usa-se a esterilização do solo pelo vapor, a fim de matar as linhas de microrganismos desenvolvidos pela monocultura (DAVIES). Porém, isso é uma concepção errada e danosa, porque não se trata de aniquilar certos microrganismos da terra, mas de equilibrar as condições de vida déles. Sabemos que, com métodos aceitáveis de cultura, estas variedades microrganianas superdesenvolvidas, e já parasitas, voltam, ao seu devido lugar, caso equilibrem as condições de vida do solo. Por outro lado, também uma esterilização do solo, permanecendo as condições desfavoráveis, não modifica a micróvida (FRANZ).

Vemos claramente o erro da nossa época em querer securar, com métodos técnicos, desequilíbrios biológicos por nós provocados.

O cultivo contínuo da mesma cultura — a monocultura — provoca o cansaço do solo para com esta cultura, sómente devido ao desenvolvimento desmesurado de uma ou duas raças de microrganismos, em detrimento às demais, que, finalmente, atuam como patógenos na própria cultura (BURGESS).
Por isso, todos os métodos de esterilização, tanto físicos como químicos, nunca trazem a extinção de todos os micro-organismos, podendo-se distinguir dificilmente entre a destruição total do patógeno e a modificação no equilíbrio ecológico da micropopulação beneficiante.

MÉTODOS QUÍMICOS

Verificou-se que, pela esterilização parcial de terras decadentes, podemos alcançar colheitas melhores; por quê? Porque a microflora unilateralmente desenvolvida, por causa das monoculturas, não é mais benéfica, mas muitas vezes já parasitante. Acredita-se que, pois, na agricultura quimiotécnica, que é o que flagrante desequilíbrio microbiano no solo é sanável pela esterilização, ou seja, pela simples matança dos microrganismos, desproporcionalmente desenvolvidos. Excece-se, porém, que remove-se temporariamente o excesso de uma variedade de microrganismos, mas não o ambiente que causou o seu desenvolvimento desproporcional, e que o causará sempre, de novo. Quer dizer, sempre se desenvolverão estes microrganismos degenerados e muitas vezes parasitares, porque as condições apropriadas para este desenvolvimento insectal perduram. (FRANZ). Assim, a indústria quimiotécnica desenvolveu, na incooperação dos factos reais, uma série de bactericidas e fungicidas para a esterilização do solo, como: cloreto de carbono, benzina, formaldeído, álcool, etanol e seus homólogos, fenol, piridina, e ligações metálicas como CuSO₄, Na₂S, cloreto de mercúrio, arsenico, contra vermes; ácido acético (centra fungos), tolul, dissulfito de carbono, etc. (ZELINGER).

BLISS constatou que, por exemplo, dissulfito de carbono mata muitos fungos que se desenvolvem em um solo decado, mas beneficia de tal maneira o Trichoderma viride que se torna, por muitos meses, o microrganismo dominante no solo.

MÉTODOS BIOCÍMICOS

A fácil multiplicação dos microrganismos na terra tem limites conforme a lavoura e as possibilidades que ela oferece. Condições diferentes ocasionam um desenvolvimento diferente. Por outro lado, ocorre a repopulação de terras estérreas muito depressa, caso as condições sejam favoráveis. Como, por exemplo, a de pântanos drenados com calagem, cultivadores de Nitrobacter logo se assentam.

A inoculação da terra tem somente êxito, se as condições de vida para essas bactérias são favoráveis. Ela é feita por adubos ricos em microrganismos (estreme) ou pela inoculação de linhas puras.

a) Inoculação por adubos ricos em bactérias

Estrume

Pela adubação com estrume de curral e compostos, ocorre um natural enriquecimento do solo em bactérias e fungos. Importantes são, aqui especial...

Vinhoça

É um dos melhores adubos de inoculação microbiana. Contém aproximadamente por litro: 3,7 g de N; 31,1 g de K; e 0,005 g de P (absolutamente pobre). O pH é na média de 4,5 a 5,0 e por isso muito tempo se teimava em aplicar a vinhaça no campo. Verificou-se, porém, que no decorrer de dois a três meses, a elevação do pH, provocada pela vinhaça, corresponde à quantidade aplicada (100 a 1000 ton/ha). Este aumento de pH ocorre pela inactivação da microvida. Também, na Escola Superior de Agricultura «Luiz de Queiroz», apurou-se que a calcificação da terra desenvolve-se paralelamente com uma melhora da fólice, aumentando a capacidade retentora do solo no mesmo tempo em que o perigo da erosão diminui. (MALAVOLTA).

Houve um sensible aumento de basea trocáveis, a troca de cations subiu de 1,6 mill-equivalentes para 12 mill-equivalentes por 100 g de solo.

Todos estes sintomas milagrosos não são incompreensíveis, porque são efeitos normais da revitalização da vida microbiana, o que é igual à refertilização do solo.

BISHOP constatou, também, o aumento da capacidade de troca (AK) com aumentadas aplicações de estreme, enquanto adubações químicas, mesmo moderadas, diminuíam a mesma.

b) Inoculação com linhas puras

Esta inoculação oferece resultados muito diversos. Muitas vezes traz um fracasso total, porque é feita sob condições desfavoráveis para os microrganismos, os quais tornando-se parasitas, descrem a cultura.

Todas as culturas possuem bactérias em sua rizosfera, embora não simbióticas, específicas a elas (WEST e LOCHHEAD), que CONN chama simplesmente de «agrobacter». Todas são gram-negativas, — incluindo, as vezes, bactérias fluorescentes, — raramente formam espórios, se as apresentam também em formas coloridas e são bastante géis. (LOCHHEAD).

COOPER, que repetiu todos os trabalhos rusos sobre a inoculação com Azotobacter e Bacillus megatherium, observou que o benefício não é geral, mas limitado às culturas que necessitam destas bactérias.
As condições exigidas para uma bem sucedida inoculação são:

a) condições biofísicas favoráveis (estrutura do solo e fontes de energia);

b) condições químicas favoráveis (nutrientes adequados);

c) um pH adequado.

Quer dizer, somente quando o arejamento está de acordo, se existem nutrientes orgânicos e químicos, se o pH é adequado, e a relação N : C não ultrapassa 1 : 10, as bactérias serão benéficas. Condições favoráveis à microvida, geralmente dispensam a inoculação. Se uma inoculação se torna necessária, já podemos calcular que as condições não são favoráveis e, portanto, a inoculação também não terá êxito. Sómente as "Rhizobacter" constituem uma exceção, porque certas linhas só existem junto a certas variedades de leguminosas. E, caso estas forem plantadas pela primeira vez, precisamos recorrer à inoculação das sementes com as respectivas bactérias. Assim, em muitos solos faltam os simbiontes da soja. Porém, depois de alguns anos de plantio consecutivo, os simbiontes aparecem espontaneamente.

BIBLIOGRAFIA

DAVIES, W. Vet. Rec. 64, H. 1, 1952.

OHLRODE,A.J. Plant Food Res. Wash 1-5, 1952.
SCHAEFFER,F. «Der Stickstoff», 1961, Oldenburg.
VEDOS, citado por RUSSELL,E.W. em «Soil Conditions and Plant Growth», pg. 222.
VERGILIO, citado por RUSSELL,E.W. em «Soil Conditions and Plant Growth», pg. 222.
VERSHININ,P.V. Pedology: 1278, 1938.
CAPÍTULO VII

OS PATÓGENOS NO SOLO

A CONTAGEM DOS GERMES .. 167
ENDÓGENAS OU BACTÉRIAS OBRIGATÓRIAS 168
ECTÓGENAS OU BACTÉRIAS FACULTATIVAS 170
PATÓGENOS E SEUS ANTAGONISTAS NO SOLO 170
PATÓGENOS VEGETAIS ... 171
PATÓGENOS VEGETAIS E O SEU COMBATE 175
MÉTODOS EFICACES DE CONTROLE DOS PARASITAS 177
DEFICIÊNCIAS MINERAIS E A SUSCETIBILIDADE VEGETAL .. 179
BIBLIOGRAFIA ... 180
O grande Pasteur disse no leito de morte:
«Claude Bernard tinha razão: O micróbio nada significa, o ambiente é tudo».

A CONTAGEM DOS GERMES:

Os órgãos das plantas e animais estão livres de microrganismos. Uma exceção é o intestino. Com o alimento chegam aí, também os micróbios, onde vivem como flora intestinal, sendo ativos através de suas enzimas.

Logo depois do nascimento de um animal, já encontramos no seu intestino bactérias e protozoários. A microflora do intestino depende, essencialmente, da microflora da forragem, que é muito variada.

Nas fezes humanas encontramos entre 3 a 70 milhões de germes por grama.

Estes germes são contados:

a) diretamente, mediante o microscópio,

b) indiretamente, em cultura «in vitro».

A contagem direta se faz, aplicando numa lâmina um líquido rico em germes. Fixam-se, tingem-se e contam-se as bactérias. Distinguimos a contagem em colônias, em quadrinhos ou em listas. O resultado da contagem individual ou em colônias é multiplicado por um fator, resultando o número em um grama. Para reduzir as fontes de erro, é interessante fazer maior número de contagens.

CONTAGEM INDIVIDUAL
CONTAGEM EM COLÔNIAS

CONTAGEM EM LISTAS

Na contagem em listas, computam-se somente os micróbios que se encontram dentro de determinada lista ou, geralmente, os micróbios existentes em listas perpendiculares.

O método de cultura é, ainda, mais certo, porque não conta os micróbios mortos. Mas nem todos os germes vivos formam colônias. O prazo e a temperatura de incubação são iguais para todas as colônias de uma placa. Todos os métodos de contagem fornecem, somente, resultados relativos.

Podemos distinguir duas variações de micróbios no intestino:

1 — os endógenos e permanentes ou obrigatórios,
2 — os ectógenos ou facultativos, que dependem da microflora da alimentação (ZEILINGER).

A frequência dos micróbios:

Nos endógenos encontramos, tanto no homem como no animal:

Escherichia coli

Aerobacter aerogenes cloacae.

1 — ENDÓGENAS OU BACTÉRIAS OBRIGATÓRIAS

a) acidófilas: existem em ambientes mais ou menos ácidos. Incluímos as bactérias que formam ácido láctico, especialmente *Streptococcus.*

Pertencem a esse grupo, os «Fecal-streptococcus», sendo no homem o *Streptococcus faecalis,* no cavalo e no boi o *Streptococcus equinus* e *Streptococcus bovis* e o *Streptococcus inulinosu* que fermenta a inúlna. O *Streptococcus liquefaciens* decompõe proteínas e pode liquefazer a gelatina. Encontramos lactobacilos no bebê: *Lactobacillus acidophilus* mais tarde *Lactobacillus bifidus,* que depois de um ano toma forma de Y; nos bezerros encontramos *Lactobacillus helveticus,* na óvelha: *Lactobacillus bulgaricus.*

São de grande importância no lacticinio. O primeiro provoca a fermentação do queijo suíço e é juntado ao leite como fermento; o segundo provoca a fermentação de iogurte.

Encontramos os lactobacilos especialmente em pastos muito pisados, porém, com bastante matéria orgânica.

b) Alcalifílas: (bactérias facultativas pH 7,3).

As bactérias do intestino que preferem uma reação alcalina, são aeróbias. Pertencem ao grupo *Proteus,* ao *Bacillus subtilis* e ao *Bacillus mesentericus.*

Todas estas variedades são bactérias de putrefação e depende de quais delas existam na forragem, para podermos dizer, quais as que encontraremos no intestino.

Fig. 56 — *Streptococcus mesenterioroides*

O gado e as aves têm muitas vezes estes bacilos no intestino, especialmente se comem um pouco de terra junto com a forragem. Os animais carnívoros possuem, especialmente, bactérias do grupo *Proteus* (bactérias obrigatórias) e *Pseudomonas.*

c) Raramente encontramos bactérias endógenas que são anaeróbias, como as que compõem proteínas, por exemplo, *Clostridium butylicum,* *Clostridium lentoputrescens* (Putrefactus coli), *Clostridium lentoputrescens* (esporogênico), que é semelhante a *Escherichia coli.* As vezes, encontramos também o patógeno *Clostridium tetani* (especialmente no estribeiro do cavalo), que causa o tétano.

Sabemos que os bacilos passam perfeitamente no estômago e não são mortos pela ácido, apesar deste possuir só um pH de 2 a 1,5.

Nos ruminantes encontramos na pança o «laboratório de fermentação». Nos outros animais, como porco, cavalo, etc., esta tarefa de fermentação de celulose é feita no apêndice e intestino grosso. Atuam aqui, especialmente bactérias anaeróbicas e muitos estreptocos (ZEILINGER).
BACTÉRIAS ECTÔGENAS E PATÓGENOS

Aos ruminantes e também aos outros animais falta uma enzima que dissolve a celulose. Por isso os animais podem aproveitar somente os produtos que as bactérias lhes fornecem.

2 — ECTÔGENAS OU BACTÉRIAS FACULTATIVAS

Encontramos nos ruminantes muitos fungos e actinomicetos. As levaduras são dissolvidas no intestino e não podem ser mais encontradas nos excrementos.

Casos falece as Lactobacter, encontramos uma decomposição muito violenta de proteína. Conhecemos-a como podridão intestinal. Este mal pode ser prevento mediante mudança de alimentação e dieta adequada. As Pseudomonas corrigido mediante mudança de alimentação e dieta adequada. As Pseudomonas são potentes na decomposição de graxas. Porém, no corpo animal a decomposição de graxas é feita principalmente por lipases do próprio corpo, que atuam muito mais rápido que as lipases microbianas.

PATÓGENOS E SEUS ANTAGONISTAS NO SOLO

Antes de entrarmos na adubação do solo com estreite e fezes, convém esclarecer um ponto:

Muitos bacteriólogistas se perguntam o que acontece com todos os gêneres de fibró, célula, disenteria, tosse, varíola e das outras epidemias.

A maioria das bactérias que causam epidemias não são capazes de sobreviverem por muito tempo no solo. Mesmo os bacilos do tifo, e que infetam a água, desaparecem espontaneamente, mais cedo ou mais tarde.

O desaparecimento dos patógenos no solo e na água atribui-se:

a) ao ambiente desfavorável para a reprodução;

b) à falta de alimentos adequados;

c) à destruição por protozoários, bactérias saprófitas e fungos.

JORDAN descobriu que a Enterobella typhosa sobrevive em água esterilizada 23 dias e em água comum sómente 4 a 7 dias. Provou que a sobrevivência é inversa à contaminação da água. Quanto mais viveviência do bacilo, tanto maior a sobrevivência, e quanto mais o número de bactemias, tanto menor a sobrevivência da Enterobella typhosa. Assim, por exemplo, a Pseudomonas aeruginosa é um bactériofago poderoso e, caso exista n'água, a Pseudomonas aeruginosa é um bactériofago poderoso e, caso exista n'água, não haverá outra bactéria. Inoculado com patógenos, a água onde existam agentes poderosos que, provocam a morte rápida de todos os patógenos.

O Mycobacterium tuberculosis é encontrado vivo no solo, sómente durante 174 dias. Depois desaparece (WAKSMAN).

O bacilo da febre aflora sobrevive em terra estéril durante 72 dias, em terras vivas sómente por 20 dias. GLATHE prova, em ensaio feito com três tipos de solos, que os patógenos Salmonella enteritidis e Salmonella cairo sobrevivem tanto mais tempo nos mesmos, quanto mais inativas forem as suas microvidas e quanto mais débeis os seus complexos coloidais. Os patógenos foram os solos que mais tempo as conservaram. No entanto, depois de quinze dias, éstes patógenos já não mais viviam em nenhum dos três solos. Por outro lado encontramos sempre no solo Clostridium tetani. Todos os bacilos que causam febre nas feridas, gracegolana gatera, são da família dos Clostridium e encontram-se no solo. Em terras ácidas o perigo é menor do que nas alcalinas. Em terras inovadas, a sobrevivência de patógenos é curta.

PATÓGENOS VEGETAIS

Antes de tratarmos dos patógenos convém lembrar alguns pontos decisivos:

1 — Que a resistência das plantas contra patógenos é hereditária, porém prejudicia, muitas vezes, outras qualidades importantes e desejadas (BRAUN).

2 — Que sempre há uma especialização dos parasitas, formando novas raças, não havendo culturas que resistam por mais anos (GLATHE, WAKSMAN).

3 — Que métodos de higiene vegetal — como rotação, culturas intercaladas, sementes sadias, época e profundidade certas de planteio, etc. — e de higiene do solo — como destecelamento da estrutura fíla, adubação química adequada, adubação orgânica, etc. (WAKSMAN), são medidas decisivas no combate às pragas e doenças (BRAUN).

4 — A adubação acertada aumenta a resistência das plantas (BRAUN).

Foi PRIMAVERI (1956) quem encontrou a regra que não há doença vegetal sem prévia e determinada deficiência mineral. Deve-se supor que a resistência da planta tem de estar diminuída a fim de que haja um ataque micrógênico ou animal. Muitas doenças vegetais, que antigamente se atribuíram aos vírus, foram reconhecidas como simples carências minerais (HAMBIDGE, WALLACE, BÜSSLER, PRIMAVERI, MALAVOLTA, CLAUS).

Os fungos compõem o grupo mais amplo de patógenos. Em todas as famílias de microscópicos, lócosomicetos, ascomicetos, basidomicetos (carvão de trigo) e especialmente entre os Fungi imperfecti encontramos patógenos vegetais (GAUWANN). Podem causar doenças tanto em vegetais, como em animais (por exemplo, os actinomicetos).

Encontramos Fusarium radiccola e Rhizocotina solani, parasitas da batatinha, em terras que desconhecem plantações de batata inglesa. Estabeleceu-se, então, que as terras onde foram plantados cereais, trigo ou outras leguminosas apresentavam menos parasitas de batatinhas do que as terras virgens.
Todos os patógenos vegetais, como, por exemplo, a Phytophthora, a Giberella, etc., podem viver por muito tempo no solo, ou sempre existir, dependendo da ambientação, aumentam perigosamente ou não. Ainda depende, antes de tudo, da alimentação da própria planta, se esta é atacada.

Acumulam-se hoje, os trabalhos realizados neste sentido e KOSSWIG mostra que o mesmo patógeno não produz o mesmo efeito em pepinos (Cucumis sativus L) da mesma variedade em diferentes canteiros, o que se deve à diferente nutrição vegetal.

Isto vem provar que a doença vegetal depende, essencialmente, da nutrição da planta.

Sabemos perfeitamente que os fungos patógenos, como a Giberella fujikuroi, Fusarium oxysporum, F. lycopersici, F. heterosporum, etc., são fungos muito frequentes, especialmente em solos ácidos. Porém, nenhum destes fungos se comporta de maneira parasitária. Ao contrário, verificou-se que em terras onde existe uma rica flora de Giberella, a maturação dos frutos de café (ALVIM, AWDONIN), se dá mais uniformes e os pastos produzem mais (CORNIS, LEBEN). No algodão, milho e outras culturas agrícolas, massa verde (CORNIS, LEBEN). No algodão, milho e outras culturas agrícolas, verificou-se apenas um maior crescimento vegetativo com relativa pouca produção de sementes, mas não houve sinal de doença (WALHOOD, CHERRY, COLEMAN).

Segundo STUART e CATHEY, a giberella não se encontra semente em fungos (espécie Giberella fujikuroi), mas, também, em sementes inativas de leijão (Phaseolus vulgaris e Phaseolus multiflorus) e outras plantas.

Cientistas japoneses apuraram que o ácido giberelício é extremamente ativo na divisão celular e provoca em todos os vegetais o prolongamento celular.

Sementes germinam prontamente, mesmo sob condições desfavoráveis, e há uma certa concentração de giberellina no solo (IKUMA, KAHN) e mesmo cereais de inverno chegam a florescer sem vernalização em presença de suficiente ácido giberelício (HIGHKIN e KOLLER).

Mas, se em terra ácida, rica em matéria orgânica e de fácil decomposição, uma chuva quente provoca uma decomposição explosiva desta matéria, o equilíbrio N-Cu se transfere repentinamente em nitrogênio favor do nutriente, o que significa uma deficiência relativa de cobre. A planta, agora carecente deste metal, mas abundantemente provida de nitrogênio, estenta um crescimento rápido, de tecido mole e pouco resistente.

Agora muda a situação. Os Fusarium e a Giberella, até agora inofensivos, tornam-se parasitas. Eniram pelas feridas radiculares, causadas pela carente e provocam o colapso rápido da planta, que morre do ápice para baixo (GARRETT).

Mas ao lado dos possíveis parasitas, existem várias bactérias, actinomicetos e fungos capazes de impedir o desenvolvimento dos fúsurios, possivelmente patogênicos; é a própria destruição das paredes celulares dos fungos.

COMBATE DOS PATÓGENOS

CHUDIACKOW constatou duas bactérias, entre tôdas, capazes de desolver fúsurios. Porém, não foram encontradas em solos «cansados», por exemplo, de linho ou aveia.

Segundo REYNOLDS e TIMONIN, a Trichoderma viride é um excelente protetor de raízes contra patógenos, como também várias espécies de Streptomyces (REHM).

Em terras onde existe a «sarna» ou o «câncer» das batatinhas, desenvolvem-se bactérias fungófagas, da família dos actinomicetos, acabando com os patógenos Streptomyces scabies (causador da sarna) e Synchytrium endobioticum (causador do câncer) (ZEILINGER).

A Pseudomonas citri, causador do câncer citrico, também é controlado por bactérias, geralmente comuns em terras sadias (HOWARD).

Fig. 57 — Pseudomonas, em solo decádico, em plena «elisão», por causa de um ataque de fagos (aumento 10.000 vezes).
Fig. 58 — Pseudomonas, parasitadas por outra bactéria
(aumento 10.000 vezes).

Porém, não sósmente séres da microflora controlam os fungos. Estes são limitados, especialmente, pela microrganismos, como fungos, nematóides, colémbolos e diplopodes, que vivem dos seus micelios (SCHUSTER, FORSS-SLUND).

São cada vez mais frequentes, no entanto, os autores que culpam as deficiências minerais por possibilitar os ataques de fungos e microrganismos. Assim, por exemplo, as Pseudomonas, também chamadas Phytophthora (HANTSCHKE), que atacam o fumo, o feijão, a macieira, etc., estão ligadas a deficiências minerais, como no "Wild fire disease" do fumo, possibilidade pela deficiência de potássio (BORTELS, WILLFARTH, McMURTRY). GERALACH descreve a traqueomicose de diversas plantas, aparentemente provocada por fungos, como a Rhyzdontia solani, coincidindo com os sintomas das efeitas da deficiência de cálcio, descritos por BUSSLER.

A infecção de vegetais pela microflora e fauna não ocorre:
1 — Se a terra fôr fértil, quer dizer, se existir um perfeito equilíbrio microbiano (GLATHE).
2 — Quando o pH fôr entre 6 a 7, ou o abastecimento em cálcio fôr suficiente (BUSSLER).
3 — Quando a nutrição vegetal fôr equilibrada e garantida (BRÁUN e VOISIN).

Um aumento desproporcional de uma raça de microrganos indica sempre um sério desequilíbrio no solo (FRANZ).

BRAUN e SCHWINN constataram que, por exemplo, a Phytophthora cactorum, um parasita perigoso em pomares, especialmente em nacicles, possui uma fase capriciosa no solo, durante a qual aumenta consideravelmente, se o solo fôr duro e inerte, mas, é rigorosamente limitada pela bicenose, principalmente pela microflora, se o solo fôr fértil e floculado (BRAUN e NIENHAUS).

PATÓGENOS VEGETAIS E O SEU COMBATE

Nos últimos 80 anos a ciência agrícola se ocupou sempre mais com os problemas da Fitopatologia. As doenças vegetais aumentam de forma assustadora e não existe meio de combatê-las, eficazmente. Muitas doenças, por exemplo, a ferrugem do trigo, ou a "fitofthora" da batatais, são praticamente incombustíveis. Fungos atacam, mas fungicidas não os combatem! Chegou-se finalmente à conclusão que:

a) Evitando a excesiva acidificação do solo, a vida dos fungos patogênicos é bastante dificultada (RUSSELL).

b) Restringindo a alimentação dos fungos, especialmente no que diz respeito ao nitrogênio, controla-se muito o seu desenvolvimento. Assim, por exemplo, usa-se a prática de "morders" quer dizer, plantar em baixo do cereal uma leguminosa, como alfafa (Medicago sativa) que, depois da colheita do trigo, começa a desenvolver, nunca deixando sobrar nitrogênio algum no solo. Assim, evita-se um ataque fungico à cultura seguinte. Depois, incorporada esta leguminosa, como adubação verde, ela liberta o seu nitrogênio para ser usado pelo cereal (GARRETT).

c) Em terras irrigadas o controle dos fungos patogênicos se faz através de um ano de cultura sêca com adubação orgânica liberal, que incentiva altamente a vida bacteriana, controlando os fungos (FAWCETT).

d) Restabelecendo a estrutura sólida da terra, que garante a alimentação suficiente e contínua das plantas. Sabe-se que a planta sã e bem nutrida NUNCA é atacada por patógenos (BRAUN, PRIMA-VESE, HOWARD).

É importante termos sempre em mente que o aparecimento de doenças vegetais é um sinal típico do abalado equilíbrio do solo. A terra fica "doente" com uma estrutura decaída; a erosão e lixiviação tomam vulto e a sobrevivência vegetal fica seriamente comprometida. (BRAUN, GARRETT).

Assim, AUFHAMMER prova que aumenta a perda de trigo adubado com nitrogênio cu nitrocálcio, mas aumenta também o ataque da Cercospora herpotrichoides. Deve-se tomar isso como sinal de desequilíbrio entre N : Cu, que podia ser evitado pela simultânea adubação com sulfato de cobre.
Doença vegetal nada mais é que o início da seleção natural, que procura eliminar tôdas as plantas inadequadas para as difíceis condições de vida, ora reinaent. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado insistir na manutenção de plantas inadequadas. É, pois, absolutamente errado ins...
DEFICIÊNCIAS MINERAIS E A SUSCETIBILIDADE VEGETAL

ZSOLDAS mostra que a frequência de brusone no arroz, aumenta com mais nitrogênio e diminui com mais potássio no solo, o que vem provar a nítida dependência, também nesta doença temível do arroz, com um desequilíbrio alimentar.

Sabemos, especialmente no arroz, geralmente cultivado em solos gley (KANG e MARKERT), que o pH dessas terras inundadas é mais alto, a saturação em bases é maior, o teor em C, N e Mn, é alto. enquanto éstes em K, P, Mg, Ca e Al é menor do que em solos não inundaos, o que significa um fácil desequilíbrio alimentar e maior susceptibilidade às doenças.

Também na batatinha, adubações unitariadas de nitrogênio ou potássio, em forma de cloreto de potássio, provocam um aumento perigoso de vírus Y (PFPEFER e GOERLITZ). Como se vê, há sempre primeiro um desequilíbrio mineral o que equivale a uma deficiência, porque se há nitrogênio demais, o cobre existente não é suficiente, e se há muito claro, o fósforo se acha impedido, enquanto o exceso de potássio provoca a deficiência de cálcio. Por outro lado, BARBIER mostra que uma adubação com matéria orgânica, que anima a microvida, contribui decisivamente para diminuir a incidência do vírus Y na batatinha (de 19% a 4%).

BUSSLER prova que o vírus Y ataca sômente plantas deficientes em cálcio, podendo-se evitar o ataque de vírus Y com uma conveniente calagem.

TEPE provou que mesmo variedades de parreiras, resistentes a cochinilha, são gravemente atacadas quando faltar potássio e cálcio na sua dieta. Com uma adequada calagem e adubação potásica éfeito pode controlar, perfeitamente, o ataque desses insetos.

Se o natural equilíbrio no solo não lôr perturbado, nunca haverá natural e prejudicial proliferação de fungos danosos.

A forma parasitária duma fungo é nada mais que a adaptação desta raça às novas e adversas condições de vida. Graças ao ciclo vegetativo curtíssimo, esta adaptação ocorre logo, em prejuízo da dos nossas culturas.

Resumindo, pode-se constatar:
Os patógenos ocasionais, que vivem sempre no solo, como os fusários, rizoctonias, pseudomonas, etc., só atacam as culturas se o equilíbrio ecológico dos microorganismos no solo lôr modificou em seu favor, e se faltar, ainda, certo e determinado nutriente na alimentação vegetal.

Os patógenos obrigatórios, como, por exemplo, Puccinia graminis tritici, Erysipheceae, só atacam se o seu hospedeiro quando êste sofre de uma deficiência alimentar, isto é de uma determinada carência mineral, sendo limitados os ataques estritamente a mesma deficiência.

A ação dos patógenos é, pois, a expressão flagrante de um desequilíbrio ecológico e alimentar, podendo ser a sua atuação evitada, através de métodos agrícolas adequados.
MEYER, L. Ber. Landbautech. 4: 3-12, 1948.
PFEFFER, Ch. e GOERLITZ, H. A. Thaler Arch. 5: 216-235, 1961.
CAPÍTULO VIII

A FORMAÇÃO DO ESTRUME

O ESTRUME DE CURRAL .. 185
O DESENVOLVIMENTO DOS MICRORGANISMOS 186
OS PROCESSOS DA FORMAÇÃO DE ESTRUME 188
A FORMAÇÃO DE ÁCIDOS ORGÂNICOS
POR MICRORGANISMOS NO ESTRUME E CHORUME ... 189
A FORMAÇÃO DE GASES ... 189
A FERMENTAÇÃO QUENTE DE KRANTZ 190
A TRANSFORMAÇÃO DE NITROGÉNIO NO ESTRUME 191
A NITRIFICAÇÃO NO ESTRUME DEPOSITADO 192
AS PERDAS SUBSTANCIAIS NO ESTRUME DE CURRAL 192
A TRANSFORMAÇÃO DE SUBSTÂNCIAS MINERAIS NO
ESTRUME ... 192
BIBLIOGRAFIA ... 194
O estrume consiste:

a) nos resíduos alimentares transformados no intestino animal que são as fezes,
b) na lитеira ou cama do animal,
c) na urina, com a qual a cama foi embebida.

A composição do estrume varia muito segundo:

1 — a espécie (vaca, porco, etc.) e a alimentação do animal,
2 — o material e a quantidade usada para a cama (palha, turfa, fólhas, etc.),
3 — o processo de fermentação (quentec, frio).

Segundo WAKSMAN e DIEHM, as fezes de ovelhas são ricas em proteínas e pobres em celulose; as dos cavalos, pobres em proteínas e ricas em celulose e as das vacas estão num meio término destas, enquanto as das aves são as mais ricas em nitrogênio, fósforo e potássio.

O valor do estrume não é sempre igual. Podemos distinguir:

1 — um produto valiosíssimo, que resulta de fezes de gado bem nutrido, tendo como material absorvente palha de cereais, sendo fermentado por um processo «quentec», numa esterqueirada adequada, onde não há perigo delixiviação,
2 — um produto, praticamente, sem valor nenhum, constituído sômente de lignina e celulose, provindo das fezes do gado, colhidas no campo, ou juntadas em esterqueiradas inadequadas e desprotegidas. O valor deste estêrco não é maior do que casca de arroz ou bagaço de cana.

As fezes, em si, sofrem poucas modificações, caso não forem fermentadas. Já em 1882 reconheceu-se a importância da ação microbiana na formação do estrume.

URINA:

Sai do corpo animal geralmente estéril, porém, logo é infetada e sofre várias alterações, devido ao seu alto teor em substâncias solúveis, que são facilmente decompostas em matérias voláteis.

FEZES:

Consistem em quase 50% de microrganismos mortos. Sofrem sômente lenta transformação.

CAMA OU LITEIRA:

Consta de palha, de serragem, de fólhas sècas, de turfa, etc., que contêm uma parte em substâncias de fácil decomposição, como pentozanas, e uma parte de difícil decomposição, como a celulose e a lignina.
Para a rapidez da decomposição o teor em água é decisivo. Na fermentação do estrome são liberadas energias em forma de calor que são tanto mais altas quanto menos água as fezes contiverem. Fala-se, pois, de estromes quentes ou frios, porque, na presença de um elevado teor em água, gastam-se muitas calorias para provocar o aquecimento do substrato. (WAKSMAN, RUSSELL, ZEILINGER, KRANTZ, MALAVOLTA).

ESTROME QUENTE:

ESTROME FRIO:

O estreme de vaca tende a ser «frio», mas menos do que o dos porcos, porque contêm, ao lado de bastante água, muitas substâncias facilmente decomponíveis.

Em muitos sistemas de produção de estrome fermenta-se urina, em separado, para chorume, porque se quer evitar uma fermentação fria do estreme.

O estreme fresco não está em condições de ser aplicado ao solo, porque está ainda sujeito a profundas alterações, nas quais se perde até 1/3 de sua substância.

Segundo DÉHERAIN, a função da «cama» (material absorvente) não consiste, sômente, em confortar os animais, mas em fornecer as celuloses indispensáveis à humificação do estereço, dando ao estreme o valor especial que possui no melhoramento do solo. Por isso, a composição química da «cama» é de grande importância. Apesar da turfa absorver 4 a 5 vezes o seu peso em água, enquanto a palha, sômente, absorve 2 a 3 vezes o seu peso, este último é muito mais valioso na produção do estrome.

O DESENVOLVIMENTO DOS MICORGANISMOS:

O número de germes aumenta, rapidamente, na urina, porém, logo depois da mistura com as fezes e a litera, baixa radicalmente, porque mudaram as condições de vida. Mas, depois de 24 horas, ocorre um novo aumento dos micorganismos, provindo, especialmente, da atividade acelerada dos germes da urina. Com o decorrer do tempo o número dos micróbios diminui sensivelmente, mas, depois de 14 anos, ainda podem ser encontrados vários milhões em um grama de estrome.

Os micorganismos mais comuns do estreme são:

Bactérias, especialmente bácolos e alguns cocos (Streptococcus e Sarcina), tais como:

FERMENTAÇÃO DO ESTRUME

Escherichia, Aerobacter, bactérias fluorescentes, Pseudomonas, Proteus, Bac. subtilis, Bac. mesentericus, Bac. cereus.

Estes bacilos esporogênicos provêm da terra e da forragem infetada com terra.

A reação levemente alcalina favorece, também, bactérias esporogênicas anaeróbias, como o Clostridium lentoputrescens.

Existe, também, no estreme grande número de fungos termófilos como o Sporotrichum sp., Aspergillus fumigatus e Oospora lacis, actinomicetos como Streptomyces, Nocardia, Pseudonocardia thermophila, etc., diversos protozoários como ciliados e flagelados, e, também, nematoídes, rotatórios, oligoquetas, etc. (HENSSSEN).

A fermentação e maturação do estreme são devidas a agentes microbianos, que induzem tôdas as reações químicas.

Especialmente as oxidações conduzem a considerável diminuição da quantidade de matéria orgânica.

A maioria dos micorganismos são anaeróbios, mas existem, também, alguns aeróbios. As transformações mais profundas sofre a uréia contida nos excrementos sólidos e líquidos, podendo-se perder grande parte do nitrogênio em condições inadequadas.

Misturando-se com o estereço, gêenso ou superfosfato, na base de 50 kg/ton., as perdas de N são menores (MALAVOLTA), podendo-se reduzir-as a uns poucos porcento, misturando-o com terra no início da fermentação (NEHRING e SCHIEMANN).

Nas estrumeiras, estes micorganismos são ativos e fermentam excrementos animais transformando-os em estreme. Este processo chama-se fermentação de estreme ou simplesmente: «estromeção». É muito semelhante aos processos da decomposição no solo. O estreme bem currido deve ser de coloração clara, de consistência fofa e friável, mas nunca rígida nem embolorada.

Normalmente ocorre uma fermentação fria. O estreme «nobre», porém, é o produto dum fermentação quente, onde a vida microbiana é, em grande parte, esterilizada pelas temperaturas elevadas (até 60° C). É, portanto, um produto de processos químicos, físicos e enzimáticos, depois da elevação da temperatura, graças à atividade microbiana (WAKSMAN).

Muitos autores alegam que o estreme não dá melhor efeito que um adubo químico, quando colocadas iguais quantidades de sais minerais.

Entretanto, não se cogita de que a ação benéfica do estreme não é a curto prazo (WAKSMAN), mas muito mais demorada, porque a sua superioridade é no melhoramento da estrutura do solo. Assim, NYS prova que uma adubação comercial, a curto prazo, dá um bom efeito, mas em ensaios de longa duração ela depende da estrutura do solo.

Segundo RIBENSAM, os micorganismos do solo aumentam com uma adubação comercial, mas encontram o seu máximo numa adubação de estreme, mais uma adubação mineral. VETTER diz que o efeito de uma adubação comercial é tanto maior, quanto mais matéria orgânica contiver o solo.
O estriume possui qualidades que nenhum outro adubo têm (KLAPP); ele dá, ao solo, a base para a adubação comercial e o seu valor não está sómente no nitrogênio, fósforo e potássio que adiciona ao solo, mas no fato de ser o melhor alimento microbiano. SALTER relata, também, sobre a maior "capacidade de campo", quando o estriume foi aplicado superficialmente.

Em solos ácidos, o pH tende a subir (PRIMAVERI) adubando com estriume, enquanto em solos alcalinos baixa. Em ensaios feitos durante 20 anos, LÜKEN notou que o estriume aumentava as safras, enquanto a adubação comercial as baixava. Queremos lembrar, mais uma vez, que quando se fala de estriume, refere-se a um produto de fezes, urina, e palha, convenientemente curtido e não simplesmente de excrementos sólidos do gado, colhidos no campo.

Processo de fermentação do estriume:
Num lugar bem sombreado e seco, de preferência sobre pais redondos, colocados em cima de uma fossa, reparte-se o espaço em três trechos. No primeiro, coloca-se 40 cm de estriume, de maneira a ficar solto, enchendo-se nos dois dias seguintes os outros quadros. No quarto dia soca-se, cuidadosamente, o estriume do primeiro quadro, colocando de novo 40 cm de estriume sótão. Em cada 80 cm coloca-se uma camada de 10 cm de terra. Prossegue-se, assim, até formar pilhas de 3 a 4 metros de altura. O estriume deve ser protegido contra chuva e sol, e regado, de vez em quando, com água, ou melhor, com o chorrume escorrido e acumulado na fossa. Depois de 3 a 4 meses teremos um produto marrom, friável, quase inodoro, de ótima qualidade.

OS PROCESSOS DA FORMAÇÃO DE ESTRUME (seg. ZEILINGER):

1 — A decomposição das substâncias ricas em carboidratos, anitrogenosas, especialmente de açúcar e graxa:

As graxas encontramos sômente nas fezes, nunca na urina. Estas substâncias sêcas são decompostas até CO₂, H₂, CH₄, que se volatilizam.

Ocorrem, por isso, enormes perdas substanciais. Caso o estriume não seja convenientemente depositado, está perdendo sóbrem a até 50% da substância total.

A decomposição de carboidratos e matérias pectínicas é feita não só por bactérias esporogênicas, como Aerobacter, Clostridium, mas também por bactérias não esporogênicas, como amilolíticas, que decompõem ácidos, e também por actinomicetos e fungos.

2 — A decomposição de pectinas:

Estas substâncias são intercelulares e têm a função de "colar" as células uma à outra. Se a pectina é decomposta, os conjuntos celulares entram em colapso e o tecido vegetal torna-se friável.

As enzimas ativas nesta decomposição são: pectinase epectase, produzidas, especialmente, pelo Clostridium Butylicum e pelo Bacillus polymyxa.

FORMAÇÃO DE ÁCIDOS ORGÂNICOS: FORMAÇÃO DE GÁS

3 — A decomposição de celulose:

É feita, principalmente, por microrganismos anaeróbios devido ao meio reinaante na estriumeira. Destacam-se Clostridium Werneri e Clostridium Cellulomonas flavigna e Cellulomonas rassica. As enzimas ativas são a celulose é de + 45°C.

4 — A humificação:

Na estriumeira, assemelham-se os processos aos do próprio solo. No estriume "sobre" obtido pela fermentação quente, encontram-se mais substâncias húmicas de que no comum. Forma-se um humo neutro, sendo o estriume "sobre", pois, acompanhada de rápida descarboxilação e do gradativo de enriquestecimento em lignina.

FORMAÇÃO DE ÁCIDOS ORGÂNICOS POR MICRORGANISMOS NO ESTRUME E CHORUME (pela oxidação, redução e síntese):

Como já sabemos, formam-se ácidos orgânicos na dissociação de carboidratos e graxas, mas também na decomposição de proteínas, como ácido acético, ácido butírico, ácido láctico, etc.

No chorume encontramos o ácido hipúrico, que é hidrolisado e trans-hidrolisado. Lá pela decomposição de urina forma-se fenol. O benzoídeo e os sofrem pouco, porque eles ácidos são dissociados logo em seguida.

Provavelmente, formam-se também álcoolis alifáticos como produtos intermediários. Os ácidos orgânicos são ligados por NH₃. Estas ligações amoniais são, como o Indol e Escatol, responsáveis pelo cheiro do estriume.

A FORMAÇÃO DE GASES:

Os gases provêm de substâncias nitrogenadas e também de compostos anitrogenosos. Nas camadas aeróbias da estriumeira forma-se, especialmente, nitrogênio, enquanto nas anaeróbias, internas, ocorre a formação de H₂ e CH₄. A formação de CO₂ (monoóxido de carbono) e H₂S (gás sulfídrico) ocorre, sómente, em quantidades mínimas. De ligações nitrogenadas, dissociam-se azoto damente feita, ocorrem fermentações palúdicas nas camadas inferiores, formando-se, embora se conde em CH₄, H₂ e CO₂.

A formação de CO₂ pode acontecer até 75°C. A formação anaeróbica de CH₄ é exclusivamente motivada por microrganismos e termina em 55%, 60°C. Vira-se de regra, forma-se CH₄, de celulose, pentose, graxas, ácido láctico, sais, açúcares, amidas e proteínas. Forma-se H₂ geralmente de pectinas, amidas, açúcares e proteínas e, em escala máxima, de celulose.
FERMENTAÇÃO QUENTE OU PRODUÇÃO DE «ESTRUME NOBRE»
(<EDELMIST>)(seg. KRANTZ)

Quando se forma metano e hidrogênio, isto depende das condições específicas do momento.

Sob a reação ácida ou neutra, prevalecem as fermentações que produzem H₂. Sob condições muito ácidas ou alcalinas, prevalece a fermentação em CH₄. Os gases inflamáveis podem ser captados e utilizados na transformação em CH₄. Os métodos de captura de CH₄ são todos de um mesmo princípio. Utilizam uma escala de captura das gás da forma que é escoado para os gás que se introduzem na fossa. Junta-se aqui o gás que é escoado para os gás que se introduzem na fossa. O valor de combustível do gás é entre 4.400 a 5.400 calorias por metro cúbico (SAUERLANDT e GROETZNER).

O H₂, normalmente, não se volatiliza, mas é absorvido. É utilizado para a hidrólise biológica, que forma geralmente metano. A dissolução completa ocorre, porém, somente por intermédio de micróbios no solo. Conforme o sorbente, por exemplo, o oeste de fermentação é aquecido. Assim, o aumento de temperatura das condições existentes o esterume se aquece. Assim, o aumento de temperatura pode ocorrer também. O esterume, solamente depositado, aquece mais rápido por estar o esterume escaldado. As camadas superiores aquecem mais do que as inferiores. O esterume sódico pode ser hidratado ao seu início do processo de fermentação.

FERMENTAÇÃO QUENTE DE KRANTZ

Disposta-se o esterume bem sólido durante 4 dias. Isso provoca um aumento de temperatura de até 60 a 72°C. Após o quarto dia, o esterume é bem humedecido e escoado, mantendo-se assim a temperatura em volta de 55° a 60°C. Após 4 dias, reduz-se a temperatura em volta de 50° a 55°C. A temperatura é aumentada a partir de 40° a 50 centímetros de altura. Nesta porção de esterume, que tem mais ou menos 40 a 50 centímetros de altura, a temperatura pode chegar a 40° a 55°C. A manutenção da temperatura é feita por meio de um sistema de aquecimento ou radiante. A manutenção da temperatura é feita por meio de um sistema de aquecimento ou radiante.
A NITRIFICAÇÃO NO ESTRUME DEPOSITADO:

Este processo é insignificante, porque somente nas camadas superficiais existem condições aeróbias. Porém, nestas camadas, a nitrificação é impedida pela insolação e pela seca. Caso haja um aumento de nitrogênio, este é provocado pela Azotobacter. Por outro lado, existem grandes perdas em substâncias sábias e nitrogênio. O amôniaco, ou amniógenos formados, entram em reação com o ácido nítrico (HNO₃), liberando nitrogênio. Mesmo o amôniaco, ligado pelos micromonómeros, pode ser liberado.

Os micromonómeros são diretamente responsáveis pelas perdas de nitrogênio, pela desnitrificação ou oxidação do amôniaco. DÉHERAIN descobriu que, sob condições aeróbias, ambos os processos tomam vulto. As perdas de nitrogênio, em condições aeróbias, são de 38%, em vista dos 19% em condições anaeróbias. Em presença de carboidratos, a desnitrificação pode causar grandes perdas. Especialmente a bactéria Flavobacterium denitrificans reduz o NO₃, mas outras reduzem também o NO₂.

Na desnitrificação direta forma-se somente nitrogênio livre. Na indireta formam-se também gases, como N₂O, CO₂, H₂S etc. Esta demora algumas semanas, aquela somente alguns dias. O sôfismo de temperatura na desnitrificação indirecta é entre 27° e 40°C. Suporta ventilação, enquanto a direta não a suporta. A oxidação de amônio é feita em presença de micromonómeros que podem liberar nitrogênio elemental (ZEILINGER).

Vários micromonómeros oxidam também NH₃, como Proteus vulgaris e Escherichia coli.

AS PERDAS SUBSTANCIAIS NO ESTRUME DE CURRAL:

Geralmente as perdas mêsram em 40%. LÖHNIS demonstrou que, num armazenamento de três meses, as perdas são as seguintes:

<table>
<thead>
<tr>
<th>Armazenamento, comum</th>
<th>na época quente 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermentação normal</td>
<td>na época fria 22%</td>
</tr>
<tr>
<td>Armazenamento comum</td>
<td>na época quente 15 a 21%</td>
</tr>
<tr>
<td>Fermentação quente</td>
<td>na época fria 5 a 11%</td>
</tr>
</tbody>
</table>

(JEGEROFF constatou que, quanto mais úmido o estrume, tanto maiores as perdas substanciais. Com 75% de umidade as perdas atingem o máximo.

A TRANSFORMAÇÃO DAS SUBSTÂNCIAS MINERAIS NO ESTRUME:

As substâncias minerais provêm especialmente da litiaria, existindo muitas mais minerais na palha de aveia ou de arruço do que na serragem.

Durante a «maturação» do estrume, as substâncias minerais são transformadas em formas hidrossolúveis parcialmente fixadas por assimilação pelos microorganismos. As perdas em P são, no máximo de 10%, de K 20%, sendo provocadas exclusivamente por lixiviação. Também é possível que durante os processos de putrefação se volatilize H₂S, que é dizer, há perda de exôfre.

Sobre as perdas de nitrogênio já falamos.

O estrume que contém pouca palha é, geralmente, aquêle que se colhe nos pastos. Já bastante lavado pelas chuvas, o seu principal valor é ser uma matéria orgânica de difícil decomposição. Via de regra, é paupérrimo, contendo menos nitrogênio do que o necessário pelos micromonómeros para sua decomposição total. Provoca, portanto, nas culturas, facilmente, uma acentuada fome de nitrogênio.

O estrume bem tratado é um adubo completo. Geralmente, porém, não é bem tratado, sendo somente uma fonte de carbono para os micromonómeros. Os efeitos pouco benéficos e até prejudiciais que aparecem às vezes, logo depois de uma adubação orgânica, provêm desse fato. O valor desse adubo é somente igual ao valor da palha ou do bagaço que incorporamos, havendo necessidade de dejetarmos sempre salitre para contrabalançar a fome das bactérias. E, portanto, da maior importância o tratamento adequado do estrume, por que um estrume mal tratado não é somente pobre em substâncias minerais, mas, também, rico em sementes de ervas daninhas, que infestam as terras com êle adubadas.

Resumindo, pode-se constatar os efeitos do estrume:

1. — Aumenta a capacidade de infiltração e do campo (BOUYOUCOS, SALTER e HAWORTH).
2. — Promove uma estrutura floculada do solo, estável às erosões, pluvial e eólica. (VERSHININ, KLAPP, SCHEFFER e WELTE).
3. — Mobiliza os fosfatos através da microvida incentivada (SCHAFER).
4. — Equilibra a microvida e estimula especialmente a flora zimógênica (WINogradsky).
5. — Aumenta a produção de CO₂, essencial para a fotosíntese (WAKSMAN).
6. — Enriquece o solo em potássio, fósforo e nitrogênio, além de muitos elementos menores, (VERSHININ) e aumenta a capacidade de troca (BISHOP).
7. — Regula o pH do solo — tanto o ácido como o alcalino — de maneira eficaz (PRIVAMESI).
8. — Garante a normal e contínua nutrição vegetal (MEYER).
9. — Aumenta de maneira mais duradoura o rendimento agrícola (RUSSELL, MALAVOLTA).
10. — É um fator decisivo na saúde vegetal (BRAUN).

O valor dum estrume convenientemente curtido é insuperável e diz-se, nos países de agricultura intensiva: «A estrumeira é a mina de ouro do lavrador.»
BIBLIOGRAFIA

VERSININ, P.V. Pedology: 1278, 1938.

RESUMO
RESUMO

BURGES disse: «Como todos os sistemas biológicos, o solo sofre alterações permanentes, ficando, porém, em consequência disso, relativamente estável. Esta condição paradoxal é um «equilíbrio dinâmico». O equilíbrio se mantém através de modificações numa dada direção, compensado por variações, atuando em direção oposta. Frequentemente, os diversos processos - implicando um ao outro - são de ação ciclica, de modo que, apesar de transformações profundas, as alterações finais, resultantes em conjunto, são insignificantes. Assim, realmente, as quantidades das distintas frações permanecem constantes, por muito tempo, a não ser que o homem intervenha».

«Numa floresta, de zona fria, caem, anualmente, doze toneladas de folhas por hectare e, numa floresta tropical, sessenta e nove toneladas por hectare. No ano seguinte, cai a mesma quantidade — a manta que cobre a superfície do solo permanece a mesma. Aqui, o ciclo planta-solo-microorganismos é perfeito.»

Mesmo assim, existe uma leve e constante lixiviação dêstes solos pela água. Esta migração, de sais metálicos e não metálicos para o subsolo, e sua parcial lixiviação para os rios, chamamos de envelhecimento do solo.

Este envelhecimento gradual, que é muito lento numa floresta virgem e muito rápido num campo de cultura, aparece, naturalmente, a gradativa substituição das espécies de plantas ali existentes, por outras mais adaptadas. Uma árvore, exigente em magénesio, não conseguirá defender o seu lugar na associação vegetal, quando este for deficitário; fica pesteada e morre, cedendo lugar a uma árvore mais modesta na necessidade de este metal. Assim a natureza reage a qualquer modificação do solo, adaptando-se e associando-se vegetal e microbiana, às novas condições de vida. É, também, esta a razão porque, mesmo em uma mata virgem, podemos encontrar preste e plantas doentes.

Em nossas terras de cultura, o ambiente é, na minoria dos casos, próprio à cultura agrícola. O lavrador tem de criar primeiro este ambiente, antes de plantar.

Temos de estar cientes, que a agricultura é uma coisa artifical, não podendo, portanto, contar, unicamente, com os simples recursos naturais, tendo de criar, constantemente, um meio adequado para as culturas. Já a aração do solo é a primeira medida que distingue a toda a vida do mesmo, revolucionando a sua BIOCENOSE. Em lugar da rica microflora, de actinomicetos e fungos, entra agora, especialmente, uma flora bacteriana acrobíca. Diminuí, radicalmente, a micro e mesoflora, tais como micrornos, nemátodos, coelomados, etc. A microflora, agora inculitivada pela aração e arejamento, gasta, luxuriantamente, as reservas de matéria orgânica do solo. A vida se torna muito mais intensiva. É, justamente, o que o lavrador queria, porque, somente uma vida intensiva do solo, garante-lhe altas colheitas. Porém, ele tem de considerar as mudanças totais no solo, provocadas por este mesmo, tais como produção acelerada, a microvida «doméstica», inteiramente dependente do seu trato, o solo, por muito tempo desnudado e desprotegido contra a insolação, a ação das chuvas e do vento.

PORQUE AS CULTURAS AGRÍCOLAS PROVOCAM PATOGENOS

Como uma vaca de alta criação não dá bons resultados, passando só verão, e de escassez no inverno, assim também acontece a um solo arado, com trabalhos no campo, não prosperando sem cuidados especiais. O solo do solo revela nada sobre as possibilidades de vida que encontrá-lo. Porque se criam na sua rizosfera, a sua capacidade de vencer a resistência do solo, sobre a estrutura do solo e, portanto, sobre o seu próprio espaço vital, somente planta-microorganismos.

Com a cultura monófita — planta-se, muitas vezes, somente milho, ou sômente trigo, ou sômente algodão, etc — provoca-se uma alteração enorme no solo, automaticamente, todos os micro-séres capazes de utilizar as excreções radiam as mesmas mais fracas, privando-as da natural defesa, que gozava uma reduzida a microflora bacteriana e fungo-tríticas, que vivem de oxidações de metais, microflora saprófa, vivendo de matéria orgânica morta e desaparece. A microflora, e criam-se micro-séres que vivem de bacitárias, como os protozoários, ou por prévias deficiências minerais, como os parasitas — fungos, nemátodes, etc.

Como esta microvida não está capacitada a manter a estrutura física da superfícial, anaeróbica, porque a simples pulverização do solo duro e envergonha, dentro de poucas semanas. Aqui, proliferam, especialmente, fungos e micrornos, que guardam as suas hidas. Entretanto, a vida dos fungos depende também de biliários a sobreviver no solo, os mesmos surgem como fungos parasitas em plantas, aparece somente no momento em que as condições de vida lhe são favoráveis. A ambigência dos micrornos ocorre muito mais rapidamente dueto que a agricultura. O aparecimento de parasitas vegetais é sinal de que:

1 — não há mais condições adequadas para micro-séres saprófitas; falta a matéria orgânica no solo;
2 — falta a diversidade de microrganismos no solo;
3 — há células necrotizadas no tecido do vegetal vivo, porque células sãs e vivas nenhum microrganismo ataca.

No momento em que aparece um inãço de difícil eliminação, ou um parasita vegetal, sabemos: a nossa agricultura está errada. Botamos em ruínas a Biocenose do Solo e sofremos, portanto, as consequências. Neste momento, a aplicação de adubos químicos, de inseticidas, fungicidas e erbicidas, já não resolve mais o caso. Fungicida e ervicida contribuem, nesta situação, eficazmente, à total destruição da microvida e da estrutura do solo, e com isso, da FERTILIDADE do mesmo.

Deve-se tomar como regra:

1 — A adubação química só reage, economicamente, em solos de boa estrutura e microvida, porém esgotados pelas culturas agrícolas.
2 — Em solos entorpecidos, incêndios e pestanejados, o seu efeito é reduzido, antieconômico ou nulo, porque o meio ecológico é completamente adverso à cultura, impossibilitando o seu desenvolvimento normal.
3 — A fertilidade do solo depende, não só da simples aplicação de adubos comerciais, mas, essencialmente, da microvida equilibrada.
4 — Pestes e inãços são o sinal de uma biocenose deturpada, geralmente provocada por uma falta aguda de matéria orgânica DENTRO do solo. Uma acumulação de humus na superfície, como acontece em pastos mal tratados e ácidos, não contribui à fertilidade do solo, porque carecem da microvida indispensável.

A primeira medida para a recuperação da fertilidade do solo é, portanto, a colocação adequada de matéria orgânica. Esta, NUNCA deve ser virada profundamente, mas deve ser misturada superficialmente com o solo e, em solos ácidos, deve-se incentivar a microvida com uma calagem adequada.

Todos os trabalhos no campo devem ser feitos, especialmente, com vista a MANUTENÇÃO DE UMA MICROVIDA RICA E POLIFORME e só, em segundo lugar, enxada em vista a própria cultura, porque se a microvida é favorável, o solo é fértil e a cultura se aproveita disso. O único serviço feito no campo, tendo em vista a cultura, é a adubação química. Os demais trabalhos devem ser feitos em benefício da microvida que, por sua vez, beneficia a cultura. Vem ser feitos no benefício da microvida que, por sua vez, beneficia a cultura. Vem ser feitos em benefício da microvida que, por sua vez, beneficia a cultura. Vem ser feitos em benefício da microvida que, por sua vez, beneficia a cultura. Vem ser feitos em benefício da microvida que, por sua vez, beneficia a cultura.

A base de uma agricultura sadiã, próspera e lucrativa é, portanto, a manutenção de uma micropopulação saprófita e aeróbia, que necessita:

a) o arejamento adequado do solo,
b) uma alimentação suficiente em matéria orgânica morta,
c) uma alimentação mineral equilibrada de nitrogênio, potássio, fósforo, cálcio, magnésio, manganes, boro, zinco, cobre, molibdênio, ferro, enxofre, cloro, cobalto, manganês e outros.

Devemos sempre lembrar que a falta de uma microvida saprófita, acarreta o aparecimento de uma microlora parasita. Um solo duro, entorpecido, sem baríves, porque são próprios do ambiente, enquanto a cultura não o é, observança das Leis da Biocenose. Dentro da biocenose encontramos, igualmente, como, por exemplo, os fitotoparasitas, os problemas da adubação química, as ervas daninhas e muitos outros.

Podemos constatar que existe no solo uma microvida tão variada e rica, que em nada está inferior à macrovida vegetal e animal em cima do solo. Por lei de DARWIN sobre a seleção e sobrevivência do mais forte, esta Lei, alteração da raça — é catastrófica sob situações perturbadas e desequilibradas, adaptados às condições adversas.

A defesa mais certa contra qualquer tipo de parasitismo é a absoluta Enquanto perdem a formas normais, e sob essas condições, com os microrganismos, com a microvida, com a macrovida, com a macroflora do solo, o solo é sempre este estado. Acontece isso, também, durante a morrer, a fim de ceder lugar ao mais forte que está adaptado às condições mortas.

A Natureza, sem que o homem interfira, sempre recorre à pronta eliminação de tudo que não é perfeitamente adaptado ao seu ambiente. Por isso, Esperança, mas sem asas, e por isso, viveram as epidemias para eliminar o inãço. Sem a interferência do homem não haveria doenças vegetais fora do de.

A decadência da terra, provocada por nossos métodos de agricultura, é favoráveis E, pela lei de DARWIN, este fato é de ser eliminados pela microvida química. A química nada tem a ver com elas. Ao contrário, onde é equilibrar a vida desequilibrada do solo. Restabelecer as condições favoráveis a
O EQUILIBRIO NATURAL

uma micro e macrovida sadia, restabelecer a estrutura fóica do solo, a antiga relação entre os minerais, a fórta-tampão do solo, e a capacidade de retenção. O que está errado não é o tempo, nem o clima, nem a planta, mas, ensençialmente, o nosso ponto de vista absolutamente abiótico.

A violação das leis naturais necessita ceder lugar ao respeito a elas. Enquanto desprezarmos tôdas as leis e todos os equilíbrios naturais, a natureza nos levará ao desespero e finalmente ao perigo de morrer de fome. Enquanto perdurarmos o pensamento artificial para com a natureza, temos que ser combatidos por ela. Mas quando nós nos enquadramos no equilíbrio natural, terei a nossa vida assegurada dentro disse equilíbrio. Necessitamos, pois, compreender que, mesmo sendo a terra deu criação, pertencemos a esta e não temos o direito de violar as suas leis.

Devemos lembrar por último, que um equilíbrio natural no solo provocará, consequentemente, também condições melhoreis para a vida vegetal. Plantas bem nutridas serão alimento superior para o próprio homem.

Assim, por exemplo, a bactéria Escherichia coli, ou simplesmente denominada bactéria Coli, existe em enormes quantidades no solo e no ar adjacente. Provoca severos distúrbios gástricos, especialmente em crianças, mas sômente, quando estas forem debilitadas por uma alimentação inadequada.

Os clostrídios, uma das famílias mais importantes entre as bactérias anaeróbias, existem também em cada solo fóico, com estrutura esponjosa e bem aerada, porém, e mesmo que em terras descatadas, causando tétano, tetana, gengrena gasosa, etc., em feridas infetadas.

Em terras fárias existem outros bacilos que controlam os que poderiam ser patógenos animais e humanos. Em terras decaídas, falta êste contrôle.

Por outro lado, encontramos em terras férteis, sempre um número apreciável de fungos e actinomicetos, que produzem vitaminas e antibióticos. Assim, leveduras produzem riboflavina (B1), Streptomycetes griseus produz vitaminá B2 (além do antibiótico estreptomicina) que de certo modo são necessários para a saúde vegetal e o devido equilíbrio microbiano no solo.

Especialmente os fungos possibilitam a vida de muitos insetos, vermes e bactérias como, das minhocas, que pastam os fungos do solo em grandes quantidades, nas suínas que até cultivam basidiomicetos para a sua alimentação e de vários tipos de bactérias que vivem dos alimentos pre-digeridos pelos fungos. Os fungos e actinomicetos controlam, pelos antibióticos, as bactérias que, diferentemente, são parasitas por protozoários. As plantasаним ou freiam o desenvolvimento bacteriano. Como se vê, existe um entrosamento completo, ou como se diz mais frequentemente, uma Bicones cetica perfeita entre micro e macrovida do solo. Mas todo esse equilíbrio depende, essencialmente, da foficá e da fofica por sua vez depende da vida microbiana.

O erro é, pois, a nossa vista analítica de tôdas as coisas, separando o que não pode ser separado, e se intrometendo onde não deve haver intromissão. Devemos estar cientes de que a intromissão em favor ou contra algum destes componentes, intimamente entrelaçados, provoca, infalivelmente, um desequilíbrio catastrófico entre os demais. É quanto mais nos intrometemos, tanto pior ficará. Devemos discernir que a análise serve para comprender melhor às qualidades particulares de um ou outro componente desta Biconose, mas componente dessa trama viva. Para sanar a falta de bactérias, a proliferação de fungos, ou inços, a ação parasitica de fungos ou bactérias, a falta componente, mas EQUILIBRAR O CONJUNTO, RESTABELECENDO AS CONDIÇÕES VITAIS, FAVORÁVEIS NÃO SÓMENTE A UM, MAS A TODOS.

E na SINTÊSE que encontramos o sêrego da natureza, é na VISTA GERAL que encontramos a solução de nossos problemas.

ZUSAMMENFASSUNG:

In «A Biconose do Solo na Produção Vegetal» wird versucht einen ersten, umfassenden Überblick über das gesamte Bodenleben zu geben, wobei die Mikroflora und Pflanzenwurzeln verstanden werden, alles, was sich in den Boden lebt.

Der Boden wird hier als totale «Unterlage» für die Kulturpflanzen oder als Lebensraum der Bodentiere betrachtet, sondern als ein dynamisch beeinflusst und darin, in letzter Analyse, die Bodenlehre bestimmt.

Die drei Grundwissenschaften, die die Basis zu dieser ersten synthetischstenen des Bodens, die Bodenbiologie und die Pflanzenökologie, worüber bereits eine umfassende Litteratur vorliegt.

Die moderne, zeitgemässige Landwirtschaft kann in eine rein exploitative, werden auch hoch technisierte, und eine konservatorisch eingestellte werden Boden unsichtbar belasten und somit sein Gleichgewicht stören. Dazu zählen anderen lebenswichtigen Nährstoffe, pH Korrektion durch starke Kalkzügerische Zerkleinerung von Bodenschichten, die durch den biologischen Verfall wird zu produzieren, die totale Dekadenz damit hervorruft. Letztlich gehört und Wasserführung, hervorgerufen durch den biologischen Bodenverfall, dazu. Dem gegenüber stehen die erhaltenden Methoden, die, geboren aus der der durch richtige Erkennung der organischen Düngung, equilibrierte Han als Nährstoffe behandelt wird, Rotation, wobei sich verbessern und dem Boden automatisch steigt Bieten liefert.

Die Grundlage der Bodenfruchtbarkeit ist aber durch die organische Substanz der Bodenflora und des Bodenwurzelwassers gegeben. Sie bestimmt den Grad der Nährstoffversorgung der Pflanzen. Die Bodenflora, die in Form von Humus, reicht die Höhe der Nährstoffversorgung der Pflanzen, und die organische Substanz der Bodenflora, die in Form von Humus, reicht die Höhe der Nährstoffversorgung der Pflanzen. Die Bodenflora, die in Form von Humus, reicht die Höhe der Nährstoffversorgung der Pflanzen. Die Bodenflora, die in Form von Humus, reicht die Höhe der Nährstoffversorgung der Pflanzen. Die Bodenflora, die in Form von Humus, reicht die Höhe der Nährstoffversorgung der Pflanzen. Die Bodenflora, die in Form von Humus, reicht die Höhe der Nährstoffversorgung der Pflanzen.
ÍNDICE DOS TEMAS

Acaros, contrôle, 176
ácido: acético, 78, 96, 118, 189 benzóico, 87, 118, 189 butírico, 78, 96, 189 carbônico, 100, 132 fórmico, 78, 96, 189 fosfórico, 130 fásico, 85 gibélico, 172 glóxico, 117 hipúrico, 117, 118, 191 húmico, 85, 86, 189 lático, 168, 189 nitrico, 75, 100 nitroso, 75, 100, 192 propiônico, 78 sulfúrico, 124, 131, 132 úrico, 117, 191 valeriânico, 96
ácidos: aminados, 23, 34, 36, 96 aniquilação, 79 decomposição, 96 diaminados, 96 graxos, 79, 97 nucléicos, 134 orgânicos, 78, 189
Acromobacter: A. agile, 125 A. centroponctatum, 125 A. fileaciens, 125 A. hartlebii, 125 A. nitrovorum, 125 A. sutzeri, 125
Actinomicetos, 34, 49, 63, 64, 65, 68, 70, 74, 77, 81, 87, 119 122, 151, 170, 172, 173, 187, 188
com estrume, 157, 158 efeito, 26 fosfato, 155, 178 inorgânica, 177 NPK, 129 orgânica, 28, 147, 149, 155, 171, 177 potássio, 129, 155, 179 química, 27, 28, 129, 130, 147, 150, 159, 171, 187 verde, 81, 102, 103, 125, 149, 150, 156, 175
Agrobacter, 123, 187, 188 Aer. aerogenes, 122
Agricultura: moderna, conceito, 7 explorativa, 8 extensiva, 8 intensiva, 8, 15 químico-técnica, 158 subtropical, 156 tropical, 156
<table>
<thead>
<tr>
<th>INDIQUE DOS TEMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armillaria mellea, 40</td>
</tr>
<tr>
<td>Auricomycetes, 62</td>
</tr>
<tr>
<td>Arénsis, 137</td>
</tr>
<tr>
<td>Asperobotrys oligospora, 56</td>
</tr>
<tr>
<td>Asperomycetes, 41, 42, 62, 171</td>
</tr>
<tr>
<td>Asperillus, 11, 60, 61</td>
</tr>
<tr>
<td>Asp. aercola, 99</td>
</tr>
<tr>
<td>Asp. fumigatus, 137</td>
</tr>
<tr>
<td>Asp. glaucus, 121</td>
</tr>
<tr>
<td>Asp. nidulans, 149</td>
</tr>
<tr>
<td>Asp. niger, 61, 79, 81, 121, 131, 134</td>
</tr>
<tr>
<td>Asp. ochraceus, 137</td>
</tr>
<tr>
<td>Asp. oryzae, 134</td>
</tr>
<tr>
<td>Asp. restrictus, 149</td>
</tr>
<tr>
<td>Asp. sydowi, 137</td>
</tr>
<tr>
<td>Auta cephalotes, 56</td>
</tr>
<tr>
<td>Auta sexdens, 56</td>
</tr>
<tr>
<td>Asotobacter, 36, 65, 70, 76, 95, 104, 105, 122, 123, 134, 135, 137, 159, 192</td>
</tr>
<tr>
<td>As. agilis, 95</td>
</tr>
<tr>
<td>As. chroococcum, 75, 87, 134</td>
</tr>
<tr>
<td>método da, 135</td>
</tr>
<tr>
<td>Bacilos, 87</td>
</tr>
<tr>
<td>Bacilos butricos, 190</td>
</tr>
<tr>
<td>Bacillus asterosporus, 95</td>
</tr>
<tr>
<td>Bac. cereus, 99, 125, 187</td>
</tr>
<tr>
<td>Bac. freundreichii, 191</td>
</tr>
<tr>
<td>Bac. tritipus, 68</td>
</tr>
<tr>
<td>Bac. megatherium, 104, 120, 159</td>
</tr>
<tr>
<td>Bac. mesentericus, 77, 98, 169, 187, 191</td>
</tr>
<tr>
<td>Bac. mycoides, 98, 134</td>
</tr>
<tr>
<td>Bac. nitrures, 124</td>
</tr>
<tr>
<td>Bac. pasteuri Miguel Chester, 118</td>
</tr>
<tr>
<td>Bac. polyxyn, 188</td>
</tr>
<tr>
<td>Bac. spachobutyricus, 104</td>
</tr>
<tr>
<td>Bac. stutzeri, 68, 124</td>
</tr>
<tr>
<td>Bac. subtilis, 65, 77, 98, 169, 187, 191</td>
</tr>
<tr>
<td>Bac. thermophilus grigoni, 191</td>
</tr>
<tr>
<td>Bactérias, 50, 57, 58, 65</td>
</tr>
<tr>
<td>acidófilas, 168</td>
</tr>
<tr>
<td>aerobias, 36, 68, 69, 145</td>
</tr>
<tr>
<td>alcalifílas, 169</td>
</tr>
<tr>
<td>amíinticas, 188</td>
</tr>
<tr>
<td>anaerobias, 68, 69, 145, 169</td>
</tr>
<tr>
<td>antagónicas, 172</td>
</tr>
<tr>
<td>autóctones, 65</td>
</tr>
<tr>
<td>autoóctonas, 30, 50, 66, 81</td>
</tr>
<tr>
<td>comestibilidade, 33</td>
</tr>
<tr>
<td>contagem, 168</td>
</tr>
<tr>
<td>da terra, 65, 77</td>
</tr>
<tr>
<td>de putrefação, 69, 169</td>
</tr>
<tr>
<td>decompositor da uréia, 68, 69, 154</td>
</tr>
<tr>
<td>desnitrificantes, 68</td>
</tr>
<tr>
<td>ecléticas, 170</td>
</tr>
<tr>
<td>endógenas, 168</td>
</tr>
<tr>
<td>esporógenas, 67, 95, 187, 188</td>
</tr>
<tr>
<td>fluorescentes, 68, 148, 159, 187</td>
</tr>
<tr>
<td>fungófagas, 173</td>
</tr>
<tr>
<td>gram-negativas, 39, 67, 159</td>
</tr>
<tr>
<td>gram-positivas, 67</td>
</tr>
<tr>
<td>grupos de, 67</td>
</tr>
<tr>
<td>heteróctonas, 30, 50, 66, 81</td>
</tr>
<tr>
<td>mico, 63, 81</td>
</tr>
<tr>
<td>mixa, 68, 77</td>
</tr>
<tr>
<td>não esporógenas, 67, 68</td>
</tr>
<tr>
<td>nitrificantes, 177</td>
</tr>
<tr>
<td>noduladoras, 106</td>
</tr>
<tr>
<td>relação com pH, 74</td>
</tr>
<tr>
<td>saprotetas, 170</td>
</tr>
<tr>
<td>simbiontes, 105, 110, 135, 159</td>
</tr>
<tr>
<td>termófilas, 68, 69, 118, 191</td>
</tr>
<tr>
<td>víbrions desulfurantes, 68</td>
</tr>
<tr>
<td>zimógenicas, 65</td>
</tr>
<tr>
<td>Bact. beijerincki, 105</td>
</tr>
<tr>
<td>Bact. beijerincki Erf., 151</td>
</tr>
<tr>
<td>Bacterium globiforme, 176</td>
</tr>
<tr>
<td>Bactericidas, 158, 176</td>
</tr>
<tr>
<td>Bacteriófagos, 33, 55, 111, 148</td>
</tr>
<tr>
<td>Bacteróides, 106, 110</td>
</tr>
<tr>
<td>Basidiolemas, 41, 42, 56, 62, 171</td>
</tr>
<tr>
<td>Bionemas, 7, 15, 27, 34, 52, 175</td>
</tr>
<tr>
<td>equilíbro de, 7</td>
</tr>
<tr>
<td>do solo, 10, 23, 24, 27, 28</td>
</tr>
<tr>
<td>Biogás, 190</td>
</tr>
<tr>
<td>Bodo caudatus, 54</td>
</tr>
<tr>
<td>Boletus amanita, 41</td>
</tr>
<tr>
<td>Bol. bovinus, 39</td>
</tr>
<tr>
<td>Bol. lactarius, 41</td>
</tr>
<tr>
<td>Coaden de alimentação, 24</td>
</tr>
<tr>
<td>Calagens, 76, 82, 147, 150, 153, 156, 176, 179</td>
</tr>
<tr>
<td>Caléctrio, 178</td>
</tr>
<tr>
<td>Calcolo, 88, 106, 129, 134, 135, 179</td>
</tr>
<tr>
<td>carbonato de, 75</td>
</tr>
<tr>
<td>clianamida de, 119</td>
</tr>
<tr>
<td>lixiviação do, 75</td>
</tr>
<tr>
<td>Cálculo biogênico, 57</td>
</tr>
<tr>
<td>Calda bordálnea, 176</td>
</tr>
<tr>
<td>Cama ou litera, 185, 186</td>
</tr>
<tr>
<td>Capacidade em reter água, 149</td>
</tr>
<tr>
<td>Capacidade de infiltração, 193</td>
</tr>
<tr>
<td>Capacidade de troca, 193</td>
</tr>
<tr>
<td>Carboidratos, 103, 107</td>
</tr>
<tr>
<td>decomposição, 78</td>
</tr>
<tr>
<td>deformamento, 110</td>
</tr>
<tr>
<td>Carbono, reabsorção, 132</td>
</tr>
<tr>
<td>Carboxidomonas oligocarbofila, 82</td>
</tr>
<tr>
<td>Catalizadores, 137</td>
</tr>
<tr>
<td>Cationes, 86</td>
</tr>
<tr>
<td>Células:</td>
</tr>
<tr>
<td>hospedeiras, 43</td>
</tr>
<tr>
<td>intestinais, 43</td>
</tr>
<tr>
<td>normais, 47</td>
</tr>
<tr>
<td>Celtodomonas, 81</td>
</tr>
<tr>
<td>Cel. aurigengius, 122</td>
</tr>
<tr>
<td>Cel. biaquetics, 122</td>
</tr>
<tr>
<td>Cel. flavigenius, 189</td>
</tr>
<tr>
<td>Cel. rossica, 122, 189</td>
</tr>
<tr>
<td>Celulose, 33, 36, 63, 86, 87, 177, 185, 186</td>
</tr>
<tr>
<td>decomposição, 189</td>
</tr>
<tr>
<td>fermentação, 169</td>
</tr>
<tr>
<td>Cephalothecum roseum, 99</td>
</tr>
<tr>
<td>Cercospora musae, 176</td>
</tr>
<tr>
<td>Cercosporrella horsetrichoides, 151, 175</td>
</tr>
<tr>
<td>Chlorella, 123</td>
</tr>
<tr>
<td>Chondromyces, 77</td>
</tr>
<tr>
<td>Chorume, 188</td>
</tr>
<tr>
<td>Cloroto de potásio, 178, 179</td>
</tr>
<tr>
<td>Cfloco, 124, 135, 150</td>
</tr>
<tr>
<td>Clostridium, 95, 122, 123, 159, 171, 188</td>
</tr>
<tr>
<td>Cl. anaerobium, 122</td>
</tr>
<tr>
<td>Cl. butylicum, 77, 79, 104, 169, 188</td>
</tr>
<tr>
<td>Cl. lentoputrescens, 98, 119, 169, 187</td>
</tr>
<tr>
<td>Cl. melilis, 189</td>
</tr>
<tr>
<td>Cl. pasteurianum, 79, 104, 105</td>
</tr>
<tr>
<td>Cl. sporogenes, 77, 119</td>
</tr>
<tr>
<td>Cl. tetani, 169, 171</td>
</tr>
<tr>
<td>Cl. venerei, 189</td>
</tr>
<tr>
<td>C. N, relação, 63, 82, 86</td>
</tr>
<tr>
<td>Cobalto, 134, 137</td>
</tr>
<tr>
<td>Cobre, 137, 151, 153, 155, 178, 179</td>
</tr>
<tr>
<td>Coccus, 186</td>
</tr>
<tr>
<td>Micro-, 66, 79, 119, 151</td>
</tr>
<tr>
<td>Myxox, 77</td>
</tr>
<tr>
<td>Plano-, 66</td>
</tr>
<tr>
<td>Cobbleboids, 174, 176</td>
</tr>
<tr>
<td>Colecistos, 176</td>
</tr>
<tr>
<td>Colheitas, depressão, 176</td>
</tr>
<tr>
<td>Colina, 34</td>
</tr>
<tr>
<td>Colpoda steinii, 54</td>
</tr>
<tr>
<td>Comatricha nigra, 59</td>
</tr>
<tr>
<td>Condições ecológicas, 34</td>
</tr>
<tr>
<td>Crenatina, 191</td>
</tr>
<tr>
<td>Cryptosbacterium violaceum, 33</td>
</tr>
<tr>
<td>Culturais:</td>
</tr>
<tr>
<td>ciclo vegetativo, 178, 179</td>
</tr>
<tr>
<td>intercaladas, 151, 177</td>
</tr>
<tr>
<td>proteção contra doenças, 178</td>
</tr>
<tr>
<td>resistência do, 26</td>
</tr>
<tr>
<td>rotinação, 152</td>
</tr>
<tr>
<td>suscetibilidade às doenças, 179</td>
</tr>
<tr>
<td>Cunninghamella, 61, 134</td>
</tr>
<tr>
<td>Cylindrocarpon radicale, 34</td>
</tr>
<tr>
<td>Dactylaria brochopaga, 56</td>
</tr>
<tr>
<td>DDT, 176</td>
</tr>
<tr>
<td>** Decomposição**, 82</td>
</tr>
<tr>
<td>anaeróbia, 82</td>
</tr>
<tr>
<td>Deficiências minerais, 155, 174, 179</td>
</tr>
<tr>
<td>Desenvolvimento radicular, 25</td>
</tr>
<tr>
<td>Desequilíbrio biológico, 157</td>
</tr>
</tbody>
</table>
ÍNDICE DOS TEMAS

Desnitrificação, 71, 123, 125, 147, 192
Desulfurização, 131
Diplococcus pneumoniae, 95
Diplórodes, 174
Dry farming, 103

Eberthella typhosa, 170
Ecologia, 27
classificação, 51, 52
gastrópode, 17
toção, 13
Edafologia, 13
«Edaphon», 13, 14
Elephantomys, 41
Elementos nutritivos, 72
Enchytraeidae, 56
Energia, 103
liberada, 82
suprimido, 29, 41
Enxofre, 124, 130, 131, 132, 176
Enzimas, 34, 65, 118, 137, 167, 188,
189, 192
Erysiphaceae, 179
Escherichia coli, 119, 122, 125, 168,
169, 187, 191, 192
Esporos, formação, 137
Esterilização, 158, 177
pelo vapor, 157
Estreptomicetos, 159
Estreme, 81, 155, 157, 158, 159, 185,
186, 187
consistência, 187
de curar, 111, 125, 156, 157, 158
efeito, 187
fermentação, 186
formação de gases, 189
frio, 186
maturação, 187
nitrificação do, 192
perda em substâncias, 188, 192
quentes, 186
transformação das substâncias
minerais do, 192
transformação de nitrogênio no, 191
valor, 185
Euglenina, 55
Excreções radiculares, 34, 39

Fagos resistentes, 111
Fator genético, 67
Feno, 189
Ferro, 134, 135
assimilabilidade, 136
Fezes, 185
Ficomicetos, 42, 62, 171
Fitopatologia, 175
Fitosociedade, 16, 17, 18
Flavobacterium denitrificans, 122, 125,
192
Flavobacterium difusum, 122
Fomes annosus, 40
Fomes lignosus, 40
Formigas toxicómanas, 56
Fósforo, 40, 87, 133, 149, 179, 185,
193
assimilação, 134
dispersibilidade, 134
inibição da absorção, 176
movilidade, 129, 193
órgão, 134
Fotossintese, 193
Fungicidas, 26, 158, 175, 176, 177, 178
Fungi imperfecti, 42, 149, 171
Fungos, 13, 23, 32, 49, 56, 57, 59,
60, 61, 62, 63, 65, 68, 70,
71, 74, 87, 129, 151, 158,
159, 160, 172, 174, 175,
176, 188
crecimento dos, 137
danos, 179
de aço, 41
parásitas, 39, 61
patógenos, 15, 175, 176
predador, 61, 62
proliferação danosa, 179
relação, 172
saprotícias, 39, 61
semisóficas, 40
termossóficos, 187
Fusários, 36, 39, 43, 61, 62, 63, 172,
173, 174, 179
Fusarium heterosporum, 172
F. lycopersici, 172
F. oxysporum, 172
F. radicicola, 171

ÍNDICE DOS TEMAS

Gado, doenças, 155
Galactose, 86
Gás carbônico, 30, 34, 67, 79, 100, 147
fuentes, 81
formação, 79, 80
Gasteromicos, 41
Germe, 167, 170
contagem, 167
Gibbrella, 172
Gibbrella fujikuroi, 172
Gleização, 153
Glicina, 118, 189
Glicose, 34, 86
Glomera cingulata, 176
Graxas, decomposição, 170
Guanina, 119

Hemoglobina, 110
Herbicidas, 176
Heterodera radicola, 58
Heteroptera Scaptocoris talpa, 63
Hidrogeênio, 190
formação, 82
Hidrogenomonas, 68
Hidrogenomonas agile, 68
Hifomícitos, 62
Humificação, 87, 88, 186, 190
Humina, 82, 85
Humo, 40, 81, 82, 83, 84, 85, 86, 87,
88, 135, 153, 156, 176, 178
ação biológica, 83
ácido, 155
acumulação, 88
benefícios do, 85
ciclo vital, 84
composição, 86
de reserva, 156
decomposição, 156
decomposição «explosiva», 82
decomposição lenta, 82
formação, 87
funções do, 85
importância, 87
qualidades, 86
Hydrogenomonas, 30

Incubação, 168
Insetos, 154
eliminação, 155
pasto, 154, 155
Infeção vegetal, 174
inoculação, 65, 157, 158
com linhas puras, 159
condições, 160
da terra, 158
de solos e sementes, 159
Insetícidas, 30, 176, 177, 178
Insetos, 176

Lactobacilos, 169
Lactobacillus acidophilus, 168
L. bifidus, 168
L. bulgaricus, 168
L. helveticus, 168
Lactobacter, 170
Ley - fanning, 153
Lignin fungi, 62
Lignina, 33, 63, 82, 87, 147, 185, 189
Lipases, 170
Lisina, 34
Lixiviação, 67, 86, 123, 175, 185, 193
Lumbricus terrestris, 57

Magnésio, 129, 134, 135, 151, 155,
178, 179
Mal de Panamá, 63
Manganês, 122, 123, 135, 178, 179
Manose, 34, 86
Matéria orgânica, 28, 37, 56, 57, 63,
67, 71, 72, 123,
131, 132, 148, 157,
169, 178, 179, 187,
193
de decomposição da, 104
Melanosphora, 149
Meloidogyne sp., 55
Mesofauna, 159, 174
divisão da, 53
empobrecimento, 153
forma, 52
Metano, 81, 189, 190
ÍNDICE DOS TEMAS

formação, 82
Metanomona metanica, 82
Mielotrofica, 43, 44
formação de, 61
Mucor, 99
Mucolícos, 177
Mucor, 36, 38, 39, 40, 57, 60, 61
endótrofas, 42, 43
funções das, 43
peritrofas, 42
Microbiófilos, 167, 168
aeróbios, 71
atividades, 83
ectógenos, 168, 170
endógenos, 168
esporos, 71
frequência dos, 168
parasitas, 24
Microbiologia do solo, 10, 12, 15
Micrococcus ureae, 118
Microfauna, 49, 52, 53, 55, 56, 58, 88, 159, 174, 175, 176
ação recíproca com microflora, 33
divisão, 53
formas, 52
nadadora, 71
predatória, 55
saprozoante, 56
Microflora, 49, 58, 88, 154
autóctone, 63, 145
da forragem, 167
do intestino, 167
desequilíbrio da, 177
desequilíbrio ecológico da, 66
com relação a latitudinal, 33
com relação ao solo, 33
recuperação da, 153
trófica, 16
Microprop. equilíbrio ecológico, 158
Microorganismos, 157, 158, 159, 160, 167, 168, 174, 176
acidófilos, 75
aneróbios, 119
atividade, 30, 78, 135
aumento dos, 177
autóctones, 76
autótrofos, 132
ciclo vegetativo dos, 71
citófagos ou planotrichos, 53
classificação ecológica, 49, 51
coróforos, 53
desenvolvimento, 186
desequilíbrio, 158
do solo, 72, 77, 157
equilíbrio dos, 174, 179
exigências, 70
incentivação, 149
influência das atividades agrícolas sobre, 147
influência das plantas sobre o número de, 38
influência direta sobre, 156
influência biológica, 156, 157
influência física, 156
influência química, 156, 157
não simbiontes, 104
número, 29, 53, 70, 71, 72
nutrição dos, 150
nutrientes necessários aos, 130
oscilação dos, 72
parasitas, 27
por grama de terra, 74
predadores, 53
profundidade do solo em relação aos, 68, 69, 70
quantidade dos, 30, 68
recesso dos, 70
relação com as plantas, 37
saprozoantes, 27
sídionear, 53
simbiontes, 77
temperatura, 73
termódulas, 159
transitórios, 65
umidade, 70
zymogênicas, 76, 77
Mycobacterium tuberculosis, 170
Mycobacteria cuneiformis, 58
Nährbatteria, 56
N : Cu, desequilíbrio, 175
Nematóides, 34, 37, 51, 56, 58, 62, 159, 174, 187
NH₃ : CO₂, relação, 81
Nitratos, assimilação de, 121
de amônio, 175
desmineralização, 120
formação de, 96, 102
produção, 156
redução, 120
Nitrificação, 11, 71, 79
Nitritos, formação, 100
oxidação, 101
Nitrobacter, 11, 30, 70, 75, 100, 101, 102, 158
Nitrogênio, 95, 124, 130, 149, 175, 179, 185, 187, 193
balanço, 103
deficit, 83
disponibilidade, 41
fixação bacteriana, 95
fixação pelo solo, 104
fixação por simbiontes, 105
fuentes, 95
formação, 97
liberado, 177
redução, 122
transformação, 96
Nitrosococcus, 102
Nitrosococcus, 102
Nitrosomonas, 100, 102
Nitri europaena, 102
Nitri japonensis, 102
Nitrosopirina, 102
Ornithina, 187
Pseudomonas, 108
inibição da formação, 108
processos, 107
tipos, 109
Oscillaria calcicola, 104
Oscillaria muscorum, 105
Oscillaria punctiformis, 105
Nutrição vegetal, 26, 130, 150, 174
Nutrientes, abusão de, 106, 145, 148
deficiência, 151, 178
órganicos, 160
químicos, 160
Oligoquetas, 187
Oospora, 99
Oospora lata, 187
Oxígeno, 184
na microflora, 71
Oxímera, 122
P. aeruginos ou martaudii, 34
Pastoreio permanente, 153
Pastor, 88, 123, 152, 153, 169
Parasitos, 154
Parasitias, 51, 55, 57, 58, 61, 65, 107, 157, 158, 159, 171, 172
pente, 122
controle da, 177, 178
fase saprófita, 175
Patógenos, 31, 126, 63, 65, 157, 170, 171, 172
combate, 173, 175
<table>
<thead>
<tr>
<th>ÍNDICE DOS TEMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>controle, 174, 175</td>
</tr>
<tr>
<td>morte, 170</td>
</tr>
<tr>
<td>obriga™, 179</td>
</tr>
<tr>
<td>ocasionais, 179</td>
</tr>
<tr>
<td>seus antagonistas, 170</td>
</tr>
<tr>
<td>Pseudonora morum, 59</td>
</tr>
<tr>
<td>Pectina, 188</td>
</tr>
<tr>
<td>Penicillium, 11, 36, 42, 60, 84, 149, 177</td>
</tr>
<tr>
<td>Phaeolospora cydoniae, 176</td>
</tr>
<tr>
<td>Phytomonas, 174</td>
</tr>
<tr>
<td>Phytophthora, 172, 176</td>
</tr>
<tr>
<td>Phytophthora castorium, 175</td>
</tr>
<tr>
<td>Phytophthora infestans, 177</td>
</tr>
<tr>
<td>Plantas, 26</td>
</tr>
<tr>
<td>alimentação contínua das, 175</td>
</tr>
<tr>
<td>decomposição, 37</td>
</tr>
<tr>
<td>desenvolvimento, 37</td>
</tr>
<tr>
<td>exigentes, 37</td>
</tr>
<tr>
<td>modestas, 37</td>
</tr>
<tr>
<td>recuperadoras, 37</td>
</tr>
<tr>
<td>Plasmodium, 104</td>
</tr>
<tr>
<td>Poder-tampão, 27, 74, 75, 86, 87</td>
</tr>
<tr>
<td>Podos, 171</td>
</tr>
<tr>
<td>Polyangium, 77</td>
</tr>
<tr>
<td>Potássio, 130, 134, 135, 149, 155, 179, 185, 193</td>
</tr>
<tr>
<td>Pousio, 151</td>
</tr>
<tr>
<td>Pratylenchus penetrans, 34</td>
</tr>
<tr>
<td>Pratylenchus subuniforme, 56</td>
</tr>
<tr>
<td>Proteínas, 63, 123, 131, 185, 189, 191</td>
</tr>
<tr>
<td>decomposição, 96, 98, 99, 102</td>
</tr>
<tr>
<td>Proteus, 118, 119, 120, 123, 151, 169, 187</td>
</tr>
<tr>
<td>Proteus vulgaris, 98, 125, 192</td>
</tr>
<tr>
<td>Protozoários, 23, 29, 33, 49, 52, 54, 55, 56, 57, 70, 71, 148, 156, 167, 170, 177, 187</td>
</tr>
<tr>
<td>ciliados, 159, 187</td>
</tr>
<tr>
<td>cisto de, 55</td>
</tr>
<tr>
<td>flagelados, 159, 187</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa, 31, 33, 124, 125, 170</td>
</tr>
<tr>
<td>Ps. citri, 63</td>
</tr>
<tr>
<td>Ps. fluorescens, 79, 98, 119, 120, 134</td>
</tr>
<tr>
<td>Ps. fluorescens liquefaciens, 134</td>
</tr>
<tr>
<td>Ps. fluorescens putidus, 98, 119, 120</td>
</tr>
<tr>
<td>Ps. pisciciana, 31</td>
</tr>
<tr>
<td>Pseudonocardia thermophila, 187</td>
</tr>
<tr>
<td>Puccinia graminis tritici, 179</td>
</tr>
<tr>
<td>Putrefação:</td>
</tr>
<tr>
<td>processos, 119</td>
</tr>
<tr>
<td>Pythium, 39, 43, 62</td>
</tr>
<tr>
<td>Quebra-ventos, 153</td>
</tr>
<tr>
<td>Queimada, 156, 157</td>
</tr>
<tr>
<td>Radiobacter, 34, 36, 37</td>
</tr>
<tr>
<td>número, 35, 37</td>
</tr>
<tr>
<td>Raiz,</td>
</tr>
<tr>
<td>desenvolvimento, 25</td>
</tr>
<tr>
<td>respiração, 81</td>
</tr>
<tr>
<td>Relação, ar-água, 71</td>
</tr>
<tr>
<td>bactérias: fungos, 172</td>
</tr>
<tr>
<td>C: N, 63, 82, 83, 86, 103</td>
</tr>
<tr>
<td>fungos: nemátodes, 56, 57</td>
</tr>
<tr>
<td>N : Cu, 175</td>
</tr>
<tr>
<td>Rendimento agrícola, 76, 178, 193</td>
</tr>
<tr>
<td>Respiração,</td>
</tr>
<tr>
<td>do solo, 38, 67, 81</td>
</tr>
<tr>
<td>fermento da, 135</td>
</tr>
<tr>
<td>vegetal, 70</td>
</tr>
<tr>
<td>Respirómetro, 30</td>
</tr>
<tr>
<td>linhagens de, 110</td>
</tr>
<tr>
<td>Rhizobium, 177</td>
</tr>
<tr>
<td>Rhizobium leguminosarum Frank, 106</td>
</tr>
<tr>
<td>Rhizobium radiocola Beijerinck, 106</td>
</tr>
<tr>
<td>Rhizoctonia, 36, 61, 62, 179</td>
</tr>
<tr>
<td>Rhizoctonia solani, 34, 39, 43, 62, 171, 174, 175</td>
</tr>
<tr>
<td>Rhizopogon, 41</td>
</tr>
<tr>
<td>Rhizopus nigricans, 60</td>
</tr>
<tr>
<td>Ribose, 86</td>
</tr>
<tr>
<td>Rizosfera, 23, 26, 33, 34, 36, 38, 39, 60, 151, 159</td>
</tr>
<tr>
<td>microvida na, 33</td>
</tr>
<tr>
<td>Rotações, 7</td>
</tr>
<tr>
<td>mistas, 152</td>
</tr>
<tr>
<td>Rotatórios, 159, 187</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae, 77</td>
</tr>
<tr>
<td>Salmonella enteritidis, 171</td>
</tr>
<tr>
<td>Salmonella cairoi, 171</td>
</tr>
<tr>
<td>Saprófitas, 33, 65</td>
</tr>
<tr>
<td>Saprolegnia, 131</td>
</tr>
<tr>
<td>Saprozoontes, 33, 56, 57</td>
</tr>
<tr>
<td>Sarcinas, 66, 191</td>
</tr>
<tr>
<td>Selénio, 137</td>
</tr>
<tr>
<td>Semente, 178</td>
</tr>
<tr>
<td>Serratia marcescens, 119, 122</td>
</tr>
<tr>
<td>Serratia rosea, 122</td>
</tr>
<tr>
<td>Siderospora molinii, 136</td>
</tr>
<tr>
<td>Sideromonas, 136</td>
</tr>
<tr>
<td>Silicatos, 134</td>
</tr>
<tr>
<td>Simbiose, 39, 56</td>
</tr>
<tr>
<td>trófica, 23, 34</td>
</tr>
<tr>
<td>verdadeira, 107</td>
</tr>
<tr>
<td>Sociedades políticas, 23</td>
</tr>
<tr>
<td>Sociologia vegetal, 15, 16, 17, 18</td>
</tr>
<tr>
<td>Sódio, 135, 150</td>
</tr>
<tr>
<td>Solos,</td>
</tr>
<tr>
<td>acclificação, 175</td>
</tr>
<tr>
<td>ácidos, 155, 172</td>
</tr>
<tr>
<td>alcalinização, 159</td>
</tr>
<tr>
<td>alcalinos, 155</td>
</tr>
<tr>
<td>arejamento, 147, 153</td>
</tr>
<tr>
<td>ativos, 136</td>
</tr>
<tr>
<td>biologia, 15</td>
</tr>
<tr>
<td>cansaço, 151</td>
</tr>
<tr>
<td>capacidade de retenção, 70, 159</td>
</tr>
<tr>
<td>condições químicas e físicas, 149</td>
</tr>
<tr>
<td>conservação, 15, 178</td>
</tr>
<tr>
<td>decadência, 27, 123, 146, 176, 178</td>
</tr>
<tr>
<td>deslocamento dos agregados, 24, 75</td>
</tr>
<tr>
<td>desequilíbrio estrutural, 129, 176</td>
</tr>
<tr>
<td>enrugamento, 148</td>
</tr>
<tr>
<td>equilibrio, 175</td>
</tr>
<tr>
<td>estabilidade da estrutura, 27</td>
</tr>
<tr>
<td>estabilidade dos agregados, 75</td>
</tr>
<tr>
<td>estéreis, 26</td>
</tr>
<tr>
<td>esterilização física, 157</td>
</tr>
<tr>
<td>esterilização química, 158</td>
</tr>
<tr>
<td>estrutura, 37, 129, 148, 193</td>
</tr>
<tr>
<td>fertilidade, 7, 8, 12, 14, 56, 129, 130, 135, 148, 149, 152, 177</td>
</tr>
<tr>
<td>floculação, 23, 65, 145</td>
</tr>
<tr>
<td>fósforo, 63, 145, 147, 171, 176, 177</td>
</tr>
<tr>
<td>folhas, 178</td>
</tr>
<tr>
<td>fórca-tampão, 124</td>
</tr>
<tr>
<td>higiene, 12, 171</td>
</tr>
<tr>
<td>inativos, 23, 123</td>
</tr>
<tr>
<td>influência das plantas sobre, 16</td>
</tr>
<tr>
<td>inoculação, 157, 158</td>
</tr>
<tr>
<td>leves, 176</td>
</tr>
<tr>
<td>microvida do, 12</td>
</tr>
<tr>
<td>pantanosos, 133</td>
</tr>
<tr>
<td>pastoria, 155</td>
</tr>
<tr>
<td>patógenos no, 167</td>
</tr>
<tr>
<td>pobres, 176</td>
</tr>
<tr>
<td>pobreza em microrganismo, 155</td>
</tr>
<tr>
<td>poder-tampão, 27, 74, 75, 86, 87</td>
</tr>
<tr>
<td>queimados, 155</td>
</tr>
<tr>
<td>recuperação, 14, 73 177</td>
</tr>
<tr>
<td>refertilização, 159</td>
</tr>
<tr>
<td>resistência à seca, 147</td>
</tr>
<tr>
<td>respiração de CO², 38, 67, 81</td>
</tr>
<tr>
<td>saturação relativa em água, 70</td>
</tr>
<tr>
<td>saúde, 67, 178</td>
</tr>
<tr>
<td>secamento gradativo, 157</td>
</tr>
<tr>
<td>umidade, 70, 135, 155</td>
</tr>
<tr>
<td>uso, 147</td>
</tr>
<tr>
<td>valor cultural, 23, 145</td>
</tr>
<tr>
<td>vida, 13, 26</td>
</tr>
<tr>
<td>volume ativo, 23</td>
</tr>
<tr>
<td>Spirillum, 66</td>
</tr>
<tr>
<td>Spirillum desulfuricans, 133</td>
</tr>
<tr>
<td>Sporotrichum sp., 187</td>
</tr>
<tr>
<td>Sporovibrio desulfuricans, 133</td>
</tr>
<tr>
<td>Streptococcus, 168, 186, 191</td>
</tr>
<tr>
<td>Streptococcus bovis, 168</td>
</tr>
</tbody>
</table>
ptococcus equinus, 168
Streptococcus faecalis, 168
Streptococcus inulinaceus, 168
Streptococcus liquefaciens, 168
Streptococcus mesenteroides, 169
Streptomyces, 173, 187
Streptomyces albus, 104
Streptomyces cellulosae, 122
Streptomyces diastaticus, 122
Streptomyces griseus, 62, 64, 122
Streptomyces parvus, 122
Streptomyces scabies, 122, 132, 173
Striga senegalensis, 62
Substâncias tóxicas, decomposição, 30
Sulfato de amônio, 57
Sulfato de cobre, 175
Sulfato de Magnésio, 150
Sulfurização, 131
Synchytriunm endobioticum, 173

Teoria de Smith, 8
Thiobacillus denitrificans, 68
Thiobacillus thiooxidans, 52, 132
Thiobacillus thioparus, 132
Thiobacter, 30, 132, 134
Thiobacter denitrificans, 124
Thiobacter thiooxidans, 74, 131
Tirosina, 34
Tóxicos, 34, 36, 107, 176, 177
Toxinas, 34, 36
Traqueomicose, 174
Trichoderma, 36, 81, 134, 149, 177
Trichoderma lignorum, 31, 61, 63
Trichoderma viride, 31, 62, 158, 173
Troca-adsorção, 86

Tuberais, 41
Turfa, 71, 147, 186

Umidade, 135, 155
ascensão da, 156
Uréia, 101, 117, 187, 191
decomposição, 117
Urina, 185, 186
Urobacillus pasteuri, 68, 118
Urobacter, 117.

Vahlkampfia soli, 54
Vegetação forrageira, 152
Vegetal, associação, 155
cobertura, 37
doenças do, 176
gasto em água, 130
metabolismo, 130
nutrição contínua, 193
resistência a patógenos, 171
saúde, 34, 177, 178, 193

Vermes, 49
Verticillium, 43
Vinhaça, 159
Virus, 171, 179
Vitamina B12, 55
Vitaminas, 34, 36, 131, 137.

Xilose, 34.

Zimogênicos, 65, 76
Zinco, 137, 138.